• 609.50 KB
  • 2022-08-10 发布

高中数学《函数的概念》课件复习课程

  • 23页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
1.2.1《函数的概念》\n教学目标使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系.教学重点:函数的概念,函数定义域的求法.教学难点:函数概念的理解.\n\n引例一一枚炮弹发射后,经过60s落到地面击中目标。炮弹的射高为4410m,且炮弹距地面的高度h(单位:m)随时间(单位:s)变化的规律是h=294t-4.9t2思考以下问题:(1)炮弹飞行1秒、8秒、15秒、25秒时距地面多高?(2)炮弹何时距离地面最高?(3)你能指出变量t和h的取值范围吗?分别用集合A和集合B表示出来。(4)对于集合A中的任意一个时间t,按照对应关系,在B中是否都有唯一确定的高度h和它对应?\n引例二近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.下图中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况思考:(1)能从图中看出哪一年臭氧层空洞的面积最大?(2)哪些年的臭氧层空洞的面积大约为1500万平方千米?(3)变量t的取值范围是多少?\n引例三请问:(1)恩格尔系数与年份之间的关系是否和前两个事例中的两个变量之间的关系相似?(2)如何用集合与对应的语言来描述这个关系?“八五”计划以来我国城镇居民恩格尔系数变化情况如下表:年份19911992199319941995199619971998199920002001家庭恩格尔系数%53.852.950.149.949.948.646.444.541.939.237.9\n以上三个实例有那些公共的特点?思考它们的关系可以描述为:对于数集A中的每一个t,按照某种对应关系f,在数集B中都有唯一确定的h和它对应,记作:f:AB\n所以得到函数的概念:设A和B是两个非空集合,如果按照某种对应关系f,使A的任何一个x,在B中都有唯一确定的f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数。记作:x叫做自变量,x的取值范围A叫做函数的定义域,与x的值对应的y值叫做函数值。函数值的集合{}叫做函数的值域。\n例如:(1)一次函数y=ax+b(a≠0)定义域为R值域为Ry=ax+b(a≠0)x(2)二次函数定义域为R值域为Bx\n例题分析例1已知函数(1)求函数的定义域(2)求的值(3)当a>0时,求的值解(1)有意义的实数x的集合是{x|x≥-3}有意义的实数x的集合是{x|x≠2}所以这个函数的定义域就是\n(2)(3)因为a>0,所以f(a),f(a-1)有意义课堂练习:P21练习1/2\n问题思考设A={1,2,3},B={1,4,8,9},对应关系是f:平方。问对应f:AB是否为从A到B的一个函数?这个函数的定义域是什么?值域C又是什么?一般情况下,C与B之间有关什么关系?两个函数相等的条件是什么?\n函数定义域值域对应关系*值域是由定义域和对应关系决定的。*如果两个函数的定义域和对应关系完全一致,就知这两个函数相等。今后如无特别声明,已知函数即指B为函数值域。于是函数有三要素,即:*通常用表示函数已有所反映。\n例2下列函数哪个与函数y=x相等解(1),这个函数与y=x(x∈R)对应一样,定义域不不同,所以和y=x(x∈R)不相等(2)这个函数和y=x(x∈R)对应关系一样,定义域相同x∈R,所以和y=x(x∈R)相等x,x≥0-x,x<0(3)这个函数和y=x(x∈R)定义域相同x∈R,但是当x<0时,它的对应关系为y=-x所以和y=x(x∈R)不相等\n(4)的定义域是{x|x≠0},与函数y=x(x∈R)的对应关系一样,但是定义域不同,所以和y=x(x∈R)不相等课堂练习:P21练习3\n区间的概念⒈满足不等式a≤x≤b的实数x的集合叫做闭区间,表示为[a,b]设a,b是两个实数,而且aax≤bx