• 588.00 KB
  • 2022-08-11 发布

《对数函数及其性质课件》福建西山学校高中部高一数学优秀课件

  • 21页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
\n§2.2.2对数函数及其性质\n引例:由前面的学习我们知道:如果有一种细胞分裂时,由1个分裂成2个,2个分裂成4个,···,1个这样的细胞分裂x次会得到多少个细胞?如果知道了细胞的个数y,如何确定分裂的次数x呢?由对数式与指数式的互化可知:上式可以看作以y为自变量的函数表达式\n对于每一个给定的y值都有惟一的x的值与之对应,把y看作自变量,x就是y的函数,但习惯上仍用x表示自变量,y表示它的函数:即这就是本节课要学习的:\n定义:函数,且叫做对数函数,其中x是自变量,函数的定义域是(0,+∞)。对数函数及其性质,对数函数判断:以下函数是对数函数的是()1.y=log2(3x-2)2.y=log(x-1)x3.y=log1/3x24.y=lnx5.小试牛刀4\n二.对数函数的图象:1.描点画图的变量x,y的对应值对调即可得到y=logax(a>0,a≠1)的变量对应值表如下.注意只要把指数函数y=ax(a>0,a≠1)\n图象性质a>101)yx(0,1)y=10y=ax(00,y>1;x<0,y>1;x<0,00,00,所以x≠,即函数y=logax2的定义域为-(0,+(2)因为4-x>0,所以x<4,即函数y=loga(4-x)的定义域为(-4)习题讲解\n例1中求定义域时应注意:对数的真数大于0,底数大于0且不等于1;使式子符合实际背景;对含有字母的式子要注意分类讨论。\n例2比较下列各组数中两个值的大小:⑴log23.4,log28.5⑵log0.31.8,log0.32.7⑶loga5.1,loga5.9(a>0,a≠1)解 ⑴考察对数函数y=log2x,因为它的底数2>1所以它在(0,+∞)上是增函数,于是log23.4<log28.5⑵考察对数函数y=log0.3x,因为它的底数0.3,即0<0.3<1,所以它在(0,+∞)上是减函数,于是log0.31.8>log0.32.7\n对数函数的增减性决定于对数的底数是大于1还是小于1.而已知条件中并未指出底数a与1哪个大,因此需要对底数a进行讨论:当a>1时,函数y=logax在(0,+∞)上是增函数,于是loga5.1<loga5.9当0<a<1时,函数y=logax在(0,+∞)上是减函数,于是loga5.1>loga5.9⑶loga5.1,loga5.9(a>0,a≠1)注:例2是利用对数函数的增减性比较两个对数的大小的,对底数与1的大小关系未明确指出时,要分情况对底数进行讨论来比较两个对数的大小.\n例3比较下列各组中两个值的大小:⑴.log67,log76;⑵.log3π,log20.8.解:⑴∵log67>log66=1log76<log77=1∴log67>log76⑵∵log3π>log31=0log20.8<log21=0∴log3π>log20.8注:例3是利用对数函数的增减性比较两个对数的大小.当不能直接进行比较时,可在两个对数中间插入一个已知数(如1或0等),间接比较上述两个对数的大小.\n练一练\n\n\n对数函数及其性质小结(1)本节要求掌握对数函数的概念、图象和性质.(2)在理解对数函数的定义的基础上,掌握对数函数的图象和性质的应用是本小节的重点.\n作业:P74习题2.2A组第7、8题

相关文档