• 1.67 MB
  • 2022-08-12 发布

高中数学:2.4 正态分布 课件(新人教A选修23)

  • 36页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
新课标人教版课件系列《高中数学》选修2-3\n2.4《正态分布》\n教学目标(1)通过实际问题,借助直观(如实际问题的直方图),了解什么是正态分布曲线和正态分布;(2)认识正态分布曲线的特点及曲线所表示的意义;(3)会查标准正态分布表,求满足标准正态分布的随机变量在某一个范围内的概率.教学重点,难点(1)认识正态分布曲线的特点及曲线所表示的意义;(2)求满足标准正态分布的随机变量在某一个范围内的概率\n引入正态分布在统计学中是很重要的分布。我们知道,离散型随机变量最多取可列个不同值,它等于某一特定实数的概率可能大于0,人们感兴趣的是它取某些特定值的概率,即感兴趣的是其分布列;连续型随机变量可能取某个区间上的任何值,它等于任何一个实数的概率都为0,所以通常感兴趣的是它落在某个区间的概率。离散型随机变量的概率分布规律用分布列描述,而连续型随机变量的概率分布规律用密度函数(曲线)描述。\n复习100个产品尺寸的频率分布直方图25.23525.29525.35525.41525.47525.535产品尺寸(mm)频率组距\n复习200个产品尺寸的频率分布直方图25.23525.29525.35525.41525.47525.535产品尺寸(mm)频率组距\n复习样本容量增大时频率分布直方图频率组距产品尺寸(mm)总体密度曲线\n复习产品尺寸(mm)总体密度曲线\n高尔顿板\n11\n总体密度曲线0YX\n导入产品尺寸的总体密度曲线就是或近似地是以下函数的图象:1、正态曲线的定义:函数式中的实数μ、σ(σ>0)是参数,分别表示总体的平均数与标准差,称f(x)的图象称为正态曲线\ncdab平均数XY若用X表示落下的小球第1次与高尔顿板底部接触时的坐标,则X是一个随机变量.X落在区间(a,b]的概率为:\n2.正态分布的定义:如果对于任何实数aμ时,曲线下降.并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.3、正态曲线的性质\n例3、把一个正态曲线a沿着横轴方向向右移动2个单位,得到新的一条曲线b。下列说法中不正确的是()A.曲线b仍然是正态曲线;B.曲线a和曲线b的最高点的纵坐标相等;C.以曲线b为概率密度曲线的总体的期望比以曲线a为概率密度曲线的总体的期望大2;D.以曲线b为概率密度曲线的总体的方差比以曲线a为概率密度曲线的总体的方差大2。C\n正态曲线下的面积规律X轴与正态曲线所夹面积恒等于1。对称区域面积相等。S(-,-X)S(X,)=S(-,-X)\n正态曲线下的面积规律对称区域面积相等。S(-x1,-x2)-x1-x2x2x1S(x1,x2)=S(-x2,-x1)\n4、特殊区间的概率:m-am+ax=μ若X~N,则对于任何实数a>0,概率为如图中的阴影部分的面积,对于固定的和而言,该面积随着的减少而变大。这说明越小,落在区间的概率越大,即X集中在周围概率越大。特别地有\n我们从上图看到,正态总体在以外取值的概率只有4.6%,在以外取值的概率只有0.3%。由于这些概率值很小(一般不超过5%),通常称这些情况发生为小概率事件。\n例4、在某次数学考试中,考生的成绩服从一个正态分布,即~N(90,100).(1)试求考试成绩位于区间(70,110)上的概率是多少?(2)若这次考试共有2000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?练习:1、已知一次考试共有60名同学参加,考生的成绩X~,据此估计,大约应有57人的分数在下列哪个区间内?()(90,110]B.(95,125]C.(100,120]D.(105,115]C\n2、已知X~N(0,1),则X在区间内取值的概率等于()A.0.9544B.0.0456C.0.9772D.0.02283、设离散型随机变量X~N(0,1),则=,=.4、若X~N(5,1),求P(6