- 508.50 KB
- 2022-08-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.1弧度制\n目标:1、理解并掌握弧度制的定义,2、能进行角度与弧度之间的换算。3、能用弧度制解决简单的问题\n温故而知新1、角度制的定义规定周角的1/360为1度的角这种用度做单位来度量角的制度叫角度制。1°2、弧长公式及扇形面积公式nπR180l=———nπR2360S=———n°Rl\n1、弧度制我们把等于半径长的圆弧所对的圆心角叫做1弧度的角。设弧AB的长为l,若l=r,则∠AOB=1弧度lr=OBrl=rA1弧度讲授新课\n则∠AOB=2弧度lr=则∠AOB=2π弧度lr=rOABl=2r2π弧度l=2πrOA(B)r若l=2r,若l=2πr,2弧度\n若圆心角∠AOB表示一个负角,且它所对的弧的长为3r,则∠AOB的弧度数的绝对值是lr=3,即∠AOB=-lr=-3弧度l=3rOABr-3弧度\n由弧度的定义可知:圆心角AOB的弧度数的绝对值等于它所对的弧的长与半径长的比。定义的合理性1弧度Rl=ROAB1弧度rl=rOAB与半径长无关的一个比值\n一般地,我们规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,任一已知角α的弧度数的绝对值:︱α︱=lr其中l为以角α作为圆心角时所对圆弧的长,r为圆的半径。这种用“弧度”做单位来度量角的制度叫做弧度制。\n2、弧度与角度的换算lr=则∠AOB=2π弧度此角为周角即为360°360°=2π弧度180°=π弧度l=2πrOA(B)r若l=2πr,\n由180°=π弧度还可得1°=——弧度≈0.01745弧度180π1弧度=(——)°≈57.30°=57°18′π180\n3、例题例1.把下列各角化成弧度(1)67°30'(2)120°(3)75°(4)135°(5)300°(6)-210°\n例2:把下列各弧度化成度.(2)(3)(4)(1)108o(2)15o(3)-144o(4)-150o\n注:1、对于一些特殊角的度数与弧度数之间的换算要熟记。度0°30°45°60°90°180°270°360°弧度0π2ππ6π2π4π3π322、用弧度为单位表示角的大小时,“弧度”二字通常省略不写,但用“度”(°)为单位不能省。3、用弧度为单位表示角时,通常写成“多少π”的形式。\n例3、把下列各角化成 的形式:(1) ;(2) ;(3) .(1):(3):(2):\n\n\n\n4、圆的弧长公式及扇形面积公式αOlrl=︱α︱r由︱α︱=lr得S=—lr12=—︱α︱r212\n\n4、用弧度来度量角,实际上角的集合与实数集R之间建立一一对应的关系:实数集R角的集合正角零角负角正实数零负实数对应角的弧度数\n练习、下列角的终边相同的是( ).A.与与与与B.C.D.B\n练习xy0(1)xy0(2)\n练习\n小结:1、量角的制度:角度制与弧度制弧度制除了使角与实数有一一对应关系外,为以后学习三角函数打下基础。2、能熟练地进行角度与弧度之间的换算。3、弧长公式:扇形面积公式:(其中为圆心角所对的弧长,为圆心角的弧度数)\n例3写出满足下列条件的角的集合(用弧度制):1、终边与X轴正半轴重合;2、终边与X轴负半轴重合;3、终边与X轴重合;4、终边与Y轴正半轴重合;5、终边与Y轴负半轴重合;6、终边与Y轴重合;7、第一象限内的角;8、第二象限内的角;9、第三象限内的角;10、第四象限内的角;\n