• 240.00 KB
  • 2022-08-13 发布

(必修一)集合与函数概念练习题-高中课件

  • 12页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
高中教育无忧数学——集合与函数概念(必修一)高中课件PPT\n高中教育第一章集合第一节集合的含义、表示及基本关系A组1.已知A={1,2},B={x|x∈A},则集合A与B的关系为________.解析:由集合B={x|x∈A}知,B={1,2}.答案:A=B2.若∅{x|x2≤a,a∈R},则实数a的取值范围是________.解析:由题意知,x2≤a有解,故a≥0.答案:a≥03.已知集合A={y|y=x2-2x-1,x∈R},集合B={x|-2≤x<8},则集合A与B的关系是________.解析:y=x2-2x-1=(x-1)2-2≥-2,∴A={y|y≥-2},∴BA.答案:BA4.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是________.解析:由N={x|x2+x=0},得N={-1,0},则NM.答案:②5.已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是________.解析:命题“x∈A”是命题“x∈B”的充分不必要条件,∴AB,∴a<5.答案:a<56.已知m∈A,n∈B,且集合A={x|x=2a,a∈Z},B={x|x=2a+1,a∈Z},又C={x|x=4a+1,a∈Z},判断m+n属于哪一个集合?解:∵m∈A,∴设m=2a1,a1∈Z,又∵n∈B,∴设n=2a2+1,a2∈Z,∴m+n=2(a1+a2)+1,而a1+a2∈Z,∴m+n∈B.B组1.设a,b都是非零实数,y=++可能取的值组成的集合是________.解析:分四种情况:(1)a>0且b>0;(2)a>0且b<0;(3)a<0且b>0;(4)a<0且b<0,讨论得y=3或y=-1.答案:{3,-1}2.已知集合A={-1,3,2m-1},集合B={3,m2}.若B⊆A,则实数m=________.解析:∵B⊆A,显然m2≠-1且m2≠3,故m2=2m-1,即(m-1)2=0,∴m=1.答案:13.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是________个.解析:依次分别取a=0,2,5;b=1,2,6,并分别求和,注意到集合元素的互异性,∴P+Q={1,2,6,3,4,8,7,11}.答案:84.已知集合M={x|x2=1},集合N={x|ax=1},若NM,那么a的值是________.解析:M={x|x=1或x=-1},NM,所以N=∅时,a=0;当a≠0时,x==1或-1,∴a=1或-1.答案:0,1,-15.满足{1}A⊆{1,2,3}的集合A的个数是________个.解析:A中一定有元素1,所以A有{1,2},{1,3},{1,2,3}.答案:3高中课件PPT\n高中教育6.已知集合A={x|x=a+,a∈Z},B={x|x=-,b∈Z},C={x|x=+,c∈Z},则A、B、C之间的关系是________.解析:用列举法寻找规律.答案:AB=C7.集合A={x||x|≤4,x∈R},B={x|x5”的________.解析:结合数轴若A⊆B⇔a≥4,故“A⊆B”是“a>5”的必要但不充分条件.答案:必要不充分条件8.设集合M={m|m=2n,n∈N,且m<500},则M中所有元素的和为________.解析:∵2n<500,∴n=0,1,2,3,4,5,6,7,8.∴M中所有元素的和S=1+2+22+…+28=511.答案:5119.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A={x,xy,lg(xy)},B={0,|x|,y},且A=B,试求x,y的值.解:由lg(xy)知,xy>0,故x≠0,xy≠0,于是由A=B得lg(xy)=0,xy=1.∴A={x,1,0},B={0,|x|,}.于是必有|x|=1,=x≠1,故x=-1,从而y=-1.11.已知集合A={x|x2-3x-10≤0},(1)若B⊆A,B={x|m+1≤x≤2m-1},求实数m的取值范围;(2)若A⊆B,B={x|m-6≤x≤2m-1},求实数m的取值范围;(3)若A=B,B={x|m-6≤x≤2m-1},求实数m的取值范围.解:由A={x|x2-3x-10≤0},得A={x|-2≤x≤5},(1)∵B⊆A,∴①若B=∅,则m+1>2m-1,即m<2,此时满足B⊆A.②若B≠∅,则解得2≤m≤3.由①②得,m的取值范围是(-∞,3].(2)若A⊆B,则依题意应有解得故3≤m≤4,∴m的取值范围是[3,4].(3)若A=B,则必有解得m∈∅.,即不存在m值使得A=B.12.已知集合A={x|x2-3x+2≤0},B={x|x2-(a+1)x+a≤0}.(1)若A是B的真子集,求a的取值范围;(2)若B是A的子集,求a的取值范围;(3)若A=B,求a的取值范围.解:由x2-3x+2≤0,即(x-1)(x-2)≤0,得1≤x≤2,故A={x|1≤x≤2},而集合B={x|(x-1)(x-a)≤0},(1)若A是B的真子集,即AB,则此时B={x|1≤x≤a},故a>2.(2)若B是A的子集,即B⊆A,由数轴可知1≤a≤2.(3)若A=B,则必有a=2第二节集合的基本运算A组1.设U=R,A={x|x>0},B={x|x>1},则A∩∁UB=____.高中课件PPT\n高中教育解析:∁UB={x|x≤1},∴A∩∁UB={x|01},集合B={x|m≤x≤m+3}.(1)当m=-1时,求A∩B,A∪B;(2)若B⊆A,求m的取值范围.解:(1)当m=-1时,B={x|-1≤x≤2},∴A∩B={x|11,即m的取值范围为(1,+∞)B组1.若集合M={x∈R|-33}={x|-2≤x<0}.答案:{x|-2≤x<0}4.集合A={3,log2a},B={a,b},若A∩B={2},则A∪B=________.解析:由A∩B={2}得log2a=2,∴a=4,从而b=2,∴A∪B={2,3,4}.答案:{2,3,4}5.已知全集U=A∪B中有m个元素,(∁UA)∪(∁UB)中有n个元素.若A∩B非空,则A∩B的元素个数为________.解析:U=A∪B中有m个元素,∵(∁UA)∪(∁UB)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素.答案:m-n6.设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则∁U(A∪B)=________.解析:U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={3,6},∴A∪B={1,3,5,6,7},得∁U(A∪B)={2,4,8}.答案:{2,4,8}7.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1},则集合(A⊗B)⊗C的所有元素之和为________.解析:由题意可求(A⊗B)中所含的元素有0,4,5,则(A⊗B)⊗C中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{(x,y)|x+y-2=0且x-2y+4=0}{(x,y)|y=3x+b},则b=________.解析:由⇒点(0,2)在y=3x+b上,∴b=2.9.设全集I={2,3,a2+2a-3},A={2,|a+1|},∁IA={5},M={x|x=log2|a|},则集合M的所有子集是________.高中课件PPT\n高中教育解析:∵A∪(∁IA)=I,∴{2,3,a2+2a-3}={2,5,|a+1|},∴|a+1|=3,且a2+2a-3=5,解得a=-4或a=2,∴M={log22,log2|-4|}={1,2}.答案:∅,{1},{2},{1,2}10.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.解:由x2-3x+2=0得x=1或x=2,故集合A={1,2}.(1)∵A∩B={2},∴2∈B,代入B中的方程,得a2+4a+3=0⇒a=-1或a=-3;当a=-1时,B={x|x2-4=0}={-2,2},满足条件;当a=-3时,B={x|x2-4x+4=0}={2},满足条件;综上,a的值为-1或-3.(2)对于集合B,Δ=4(a+1)2-4(a2-5)=8(a+3).∵A∪B=A,∴B⊆A,①当Δ<0,即a<-3时,B=∅满足条件;②当Δ=0,即a=-3时,B={2}满足条件;③当Δ>0,即a>-3时,B=A={1,2}才能满足条件,则由根与系数的关系得⇒矛盾.综上,a的取值范围是a≤-3.11.已知函数f(x)=的定义域为集合A,函数g(x)=lg(-x2+2x+m)的定义域为集合B.(1)当m=3时,求A∩(∁RB);(2)若A∩B={x|-1.综上可知,若A=∅,则a的取值范围应为a>.(2)当a=0时,方程ax2-3x+2=0只有一根x=,A={}符合题意.当a≠0时,则Δ=9-8a=0,即a=时,方程有两个相等的实数根x=,则A={}.综上可知,当a=0时,A={};当a=时,A={}.(3)当a=0时,A={}≠∅.当a≠0时,要使方程有实数根,则Δ=9-8a≥0,即a≤.高中课件PPT\n高中教育综上可知,a的取值范围是a≤,即M={a∈R|A≠∅}={a|a≤}第三节函数的单调性A组1.下列函数f(x)中,满足“对任意x1,x2∈(0,+∞),当x1f(x2)”的是________.①f(x)= ②f(x)=(x-1)2③f(x)=ex ④f(x)=ln(x+1)解析:∵对任意的x1,x2∈(0,+∞),当x1f(x2),∴f(x)在(0,+∞)上为减函数.答案:①2.函数f(x)(x∈R)的图象如右图所示,则函数g(x)=f(logax)(00时,f(x)=ex+,则满足f′(x)=ex-≥0在x∈[0,1]上恒成立.只需满足a≤(e2x)min成立即可,故a≤1,综上-1≤a≤1.答案:-1≤a≤15.(原创题)如果对于函数f(x)定义域内任意的x,都有f(x)≥M(M为常数),称M为f(x)的下界,下界M中的最大值叫做f(x)的下确界,下列函数中,有下确界的所有函数是________.①f(x)=sinx;②f(x)=lgx;③f(x)=ex;④f(x)=解析:∵sinx≥-1,∴f(x)=sinx的下确界为-1,即f(x)=sinx是有下确界的函数;∵f(x)=lgx的值域为(-∞,+∞),∴f(x)=lgx没有下确界;∴f(x)=ex的值域为(0,+∞),∴f(x)=ex的下确界为0,即f(x)=ex是有下确界的函数;∵f(x)=的下确界为-1.∴f(x)=是有下确界的函数.答案:①③④6.已知函数f(x)=x2,g(x)=x-1.(1)若存在x∈R使f(x)0b<0或b>4.(2)F(x)=x2-mx+1-m2,Δ=m2-4(1-m2)=5m2-4,①当Δ≤0即-≤m≤时,则必需高中课件PPT\n高中教育-≤m≤0.②当Δ>0即m<-或m>时,设方程F(x)=0的根为x1,x2(x10.∴∴-40)在(,+∞)上是单调增函数,则实数a的取值范围__.解析:∵f(x)=x+(a>0)在(,+∞)上为增函数,∴≤,00,a≠1)在区间(0,)内恒有f(x)>0,则f(x)的单调递增区间为__________.解析:令μ=2x2+x,当x∈(0,)时,μ∈(0,1),而此时f(x)>0恒成立,∴00,即x>0或x<-.∴f(x)的单调递增区间为(-∞,-).答案:(-∞,-)10.试讨论函数y=2(logx)2-2logx+1的单调性.解:易知函数的定义域为(0,+∞).如果令u=g(x)=logx,y=f(u)=2u2-2u+1,那么原函数y=f[g(x)]是由g(x)与f(u)复合而成的复合函数,而u=logx在x∈(0,+∞)内是减函数,y=2u2-2u+1=2(u-)2+在u∈(-∞,)上是减函数,在u∈(,+∞)上是增函数.又u≤,即logx≤,得x≥;u>,得01时,f(x)<0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2.解:(1)令x1=x2>0,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.(2)任取x1,x2∈(0,+∞),且x1>x2,则>1,由于当x>1时,f(x)<0,高中课件PPT\n高中教育所以f()<0,即f(x1)-f(x2)<0,因此f(x1)9,∴x>9或x<-9.因此不等式的解集为{x|x>9或x<-9}.12.已知:f(x)=log3,x∈(0,+∞),是否存在实数a,b,使f(x)同时满足下列三个条件:(1)在(0,1]上是减函数,(2)在[1,+∞)上是增函数,(3)f(x)的最小值是1.若存在,求出a、b;若不存在,说明理由.解:∵f(x)在(0,1]上是减函数,[1,+∞)上是增函数,∴x=1时,f(x)最小,log3=1.即a+b=2.设0<x1<x2≤1,则f(x1)>f(x2).即>恒成立.由此得>0恒成立.又∵x1-x2<0,x1x2>0,∴x1x2-b<0恒成立,∴b≥1.设1≤x3<x4,则f(x3)<f(x4)恒成立.∴<0恒成立.∵x3-x4<0,x3x4>0,∴x3x4>b恒成立.∴b≤1.由b≥1且b≤1可知b=1,∴a=1.∴存在a、b,使f(x)同时满足三个条件.第三节函数的性质A组1.设偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系为________.解析:由f(x)为偶函数,知b=0,∴f(x)=loga|x|,又f(x)在(-∞,0)上单调递增,所以0f(b+2).答案:f(a+1)>f(b+2)2.定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)等于________.解析:f(x)为奇函数,且x∈R,所以f(0)=0,由周期为2可知,f(4)=0,f(7)=f(1),又由f(x+2)=f(x),令x=-1得f(1)=f(-1)=-f(1)⇒f(1)=0,所以f(1)+f(4)+f(7)=0.答案:03.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则f(-25)、f(11)、f(80)的大小关系为________.解析:因为f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3),又因为f(x)在R上是奇函数,f(0)=0,得f(80)=f(0)=0,f(-25)=f(-1)=-f(1),而由f(x-4)=-f(x)得f(11)=f(3)=-f(-3)=-f(1-4)=f(1),又因为f(x)在区间[0,2]上是增函数,所以f(1)>f(0)=0,所以-f(1)<0,即f(-25)0),由f(1)+f(4)=0,得a(1-2)2-5+a(4-2)2-5=0,∴a=2,∴f(x)=2(x-2)2-5(1≤x≤4).(3)∵y=f(x)(-1≤x≤1)是奇函数,∴f(0)=0,又知y=f(x)在[0,1]上是一次函数,∴可设f(x)=kx(0≤x≤1),而f(1)=2(1-2)2-5=-3,∴k=-3,∴当0≤x≤1时,f(x)=-3x,从而当-1≤x<0时,f(x)=-f(-x)=-3x,故-1≤x≤1时,f(x)=-3x.∴当4≤x≤6时,有-1≤x-5≤1,∴f(x)=f(x-5)=-3(x-5)=-3x+15.当60,若f(-1)=0,那么关于x的不等式xf(x)<0的解集是________.解析:在(0,+∞)上有f′(x)>0,则在(0,+∞)上f(x)是增函数,在(-∞,0)上是减函数,又f(x)在R上是偶函数,且f(-1)=0,∴f(1)=0.从而可知x∈(-∞,-1)时,f(x)>0;x∈(-1,0)时,f(x)<0;x∈(0,1)时,f(x)<0;x∈(1,+∞)时,f(x)>0.∴不等式的解集为(-∞,-1)∪(0,1)答案:(-∞,-1)∪(0,1).5.已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈高中课件PPT\n高中教育[0,2)时,f(x)=log2(x+1),则f(-2009)+f(2010)的值为________.解析:∵f(x)是偶函数,∴f(-2009)=f(2009).∵f(x)在x≥0时f(x+2)=f(x),∴f(x)周期为2.∴f(-2009)+f(2010)=f(2009)+f(2010)=f(1)+f(0)=log22+log21=0+1=1.答案:16.已知函数f(x)是偶函数,并且对于定义域内任意的x,满足f(x+2)=-,若当2a,且|x1-a|<|x2-a|时,则f(2a-x1)与f(x2)的大小关系为________.解析:∵y=f(x+a)为偶函数,∴y=f(x+a)的图象关于y轴对称,∴y=f(x)的图象关于x=a对称.又∵f(x)在(-∞,a]上是增函数,∴f(x)在[a,+∞)上是减函数.当x1a,且|x1-a|<|x2-a|时,有a-x1f(x2).答案:f(2a-x1)>f(x2)8.已知函数f(x)为R上的奇函数,当x≥0时,f(x)=x(x+1).若f(a)=-2,则实数a=________.解析:当x≥0时,f(x)=x(x+1)>0,由f(x)为奇函数知x<0时,f(x)<0,∴a<0,f(-a)=2,∴-a(-a+1)=2,∴a=2(舍)或a=-1.答案:-19.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=________.解析:因为定义在R上的奇函数,满足f(x-4)=-f(x),所以f(4-x)=f(x),因此,函数图象关于直线x=2对称且f(0)=0.由f(x-4)=-f(x)知f(x-8)=f(x),所以函数是以8为周期的周期函数.又因为f(x)在区间[0,2]上是增函数,所以f(x)在区间[-2,0]上也是增函数,如图所示,那么方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1<x2<x3<x4.由对称性知x1+x2=-12,x3+x4=4,所以x1+x2+x3+x4=-12+4=-8.答案:-810.已知f(x)是R上的奇函数,且当x∈(-∞,0)时,f(x)=-xlg(2-x),求f(x)的解析式.解:∵f(x)是奇函数,可得f(0)=-f(0),∴f(0)=0.当x>0时,-x<0,由已知f(-x)=xlg(2+x),∴-f(x)=xlg(2+x),即f(x)=-xlg(2+x) (x>0).∴f(x)=即f(x)=-xlg(2+|x|)(x∈R).11.已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).(1)求证:f(x)是奇函数;(2)如果x∈R+,f(x)<0,并且f(1)=-,试求f(x)在区间[-2,6]上的最值.解:(1)证明:∴函数定义域为R,其定义域关于原点对称.∵f(x+y)=f(x)+f(y),令y=-x,∴f(0)=f(x)+f(-x).令x=y=0,∴f(0)=f(0)+f(0),得f(0)=0.∴f(x)+f(-x)=0,得f(-x)=-f(x),∴f(x)为奇函数.(2)法一:设x,y∈R+,∵f(x+y)=f(x)+f(y),∴f(x+y)-f(x)=f(y).∵x∈R+,f(x)<0,∴f(x+y)-f(x)<0,∴f(x+y)x,∴f(x)在(0,+∞)上是减函数.又∵f(x)为奇函数,f(0)=0,∴f(x)在(-∞,+∞)上是减函数.∴f(-2)为最大值,f(6)为最小值.∵f(1)=-,∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.∴所求f(x)在区间[-2,6]上的最大值为1,最小值为-3.法二:设x10,∴f(x2-x1)<0.∴f(x2)-f(x1)<0.即f(x)在R上单调递减.∴f(-2)为最大值,f(6)为最小值.∵f(1)=-,∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.∴所求f(x)在区间[-2,6]上的最大值为1,最小值为-3.12.已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=x,求使f(x)=-在[0,2010]上的所有x的个数.解:(1)证明:∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴f(x)是以4为周期的周期函数.(2)当0≤x≤1时,f(x)=x,设-1≤x≤0,则0≤-x≤1,∴f(-x)=(-x)=-x.∵f(x)是奇函数,∴f(-x)=-f(x),∴-f(x)=-x,即f(x)=x.故f(x)=x(-1≤x≤1)又设1