- 79.27 KB
- 2022-08-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课题:1.6线性回归(一)教学目的:1了解相关关系、回归分析、散点图的概念2.明确事物间是相互联系的,了解非确定性关系中两个变量的统计方法;掌握散点图的画法及在统计中的作用,掌握回归直线方程的求解方法3.会求回归直线方程教学重点:散点图的画法,回归直线方程的求解方法教学难点:回归直线方程的求解方法授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:客观事物是相互联系的过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度所以说,函数关系存在着一种确定性关系但还存在着另一种非确定性关系——相关关系二、讲解新课:1.相关关系的概念当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系相关关系是非随机变量与随机变量之间的关系,函数关系是两个非随机变量之间的关系,是一种因果关系,而相关关系不一定是因果关系,所以相关关系与函数关系不同,其变量具有随机性,因此相关关系是一种非确定性关系(有因果关系,也有伴随关系).因此,相关关系与函数关系的异同点如下:相同点:均是指两个变量的关系不同点:函数关系是一种确定的关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系.2.回归分析:对具有相关关系的两个变量进行统计分析的方法叫做回归分析通俗地讲,回归分析是寻找相关关系中非确定性关系的某种确定性3.散点图:表示具有相关关系的两个变量的一组数据的图形叫做散点图.散点图形象地反映了各对数据的密切程度粗略地看,散点分布具有一定的规律4.回归直线精品学习资料可选择pdf第1页,共5页-----------------------\n^设所求的直线方程为ybxa,,其中a、b是待定系数.^则yibxia(,i,2,1,n).于是得到各个偏差^yiyiyi(bxia),(i,2,1,n).^显见,偏差yiyi的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n个偏差的平方和.222Q(y1bx1a)(y2bx2a)(ynbxna)表示n个点与相应直线在整体上的接近程度.nn记2(向学生说明的意义).Q(yibxia)i1i1上述式子展开后,是一个关于a、b的二次多项式,应用配方法,可求出使Q为最小值时的a、b的值.即nn(xixy)(iy)xyiinxyi1i1nnbnn11222,xxi,yyi(xix)xinxni1ni1i1i1aybx相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析特别指出:1.对回归直线方程只要求会运用它进行具体计算a、b,求出回归直线方程即可.不要求掌握回归直线方程的推导过程.2.求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性.3.求回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误.4.回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.三、讲解范例:例1.已知10只狗的血球体积及红血球的测量值如下精品学习资料可选择pdf第2页,共5页-----------------------\nx45424648423558403950y6.536.309.257.506.995.909.496.206.557.72x(血球体积,mm),y(血红球数,百万)(1)画出上表的散点图;(2)求出回归直线并且画出图形解:(1)见下图y105303540455055x1(2)x(45424648423558403950)45.50101y.6(53.630.952.750.699.590.949.620.655.872).73710设回归直线为y?bxa,456.53+426.3+469.25+487.5+426.99+355.9+589.49+406.2+396.55+507.72-1045.57.37=0.132222222222245+42+46+48+42+35+58+40+39+50-1045.5nxynxyiii1即b0.13,aybx1.29n22xinxi1所以所求回归直线的方程为y?0.13x1.29,图形如下:y105303540455055x例2.一个工厂在某年里每月产品的总成本y(万元)与该月产量x(万件)之间有精品学习资料可选择pdf第3页,共5页-----------------------\n如下组对应数据:x1.081.121.191.281.361.481.591.681.801.871.982.07y2.252.372.402.552.642.752.923.033.143.263.363.50(1)画出散点图;(2)求月总成本y与月总产量x之间的回归直线方程.讲解上述例题时,(1)可由学生完成;对于(2),可引导学生列表,按12121222xiyixiyixyxiyixiyi的顺序计i1i1i1算,最后得到b.1215,a.0974.^即所求的回归直线方程为y.1215x.0974.四、课堂练习:1.下列两个变量之间的关系哪个不是函数关系()A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人的年龄和身高答案:D2.给出施化肥量对水稻产量影响的试验数据:施化肥量x15202530354045水稻产量y330345365405445450455(1)画出上表的散点图;(2)求出回归直线并且画出图形解:(1)散点图(略).(2)表中的数据进行具体计算,列成以下表格i1234567xi15202530354045yi330345365405445450455xiyi4950690091251215015575180002047577722x30y,3993.,xi7000,yi1132725,xyii87175i1i1i1871757303993.b.475,故可得到27000730a3993..47530257^从而得回归直线方程是y.475x257.(图形略)五、小结:对一组数据进行线性回归分析时,应先画出其散点图,看其是否呈精品学习资料可选择pdf第4页,共5页-----------------------\n直线形,再依系数a、b的计算公式,算出a、b.由于计算量较大,所以在计算时应借助技术手段,认真细致,谨防计算中产生错误.求线性回归方程的步2骤:计算平均数x,y;计算xi与yi的积,求xiyi;计算xi;将结果代入公式求a;用byax求b;写出回归方程六、课后作业:在某种产品表面进行腐蚀线试验,得到腐蚀深度y与腐蚀时间x之间对应的一组数据:时间t(s)5101520304050607090120深度y(μm)610101316171923252946(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程解:(1)散点图略,呈直线形.(2)经计算可得t46.36,y19.4511111122ti36750,yi5442,tiyi13910i1i1i1139101146.3619.45b,3.02367501146.36a19.453.046.36.5542^故所求的回归直线方程为y3.0t.5542七、板书设计(略)八、课后记:精品学习资料可选择pdf第5页,共5页-----------------------