高中数学导数教案二 7页

  • 135.56 KB
  • 2022-08-15 发布

高中数学导数教案二

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
导数的概念习题课教学目标  理解导数的有关概念,掌握导数的运算法则教学重点  导数的概念及求导法则教学难点  导数的概念一、课前预习1.在点处的导数是函数值的改变量___________与相应自变量的改变量__的商当______________2.若在开区间(a,b)内每一点都有导数,称为函数的导函数;求一个函数的导数,就是求_____;求一个函数在给定点的导数,就是求_____.函数在点处的导数就是_____________.3.常数函数和幂函数的求导公式: 4.导数运算法则:若________________,则:二、举例例1.设函数,求:(1)当自变量x由1变到1.1时,自变量的增量;(2)当自变量x由1变到1.1时,函数的增量;(3)当自变量x由1变到1.1时,函数的平均变化率;(4)函数在x=1处的变化率.例2.生产某种产品q个单位时成本函数为,求(1)生产90个单位该产品时的平均成本;(2)生产90个到100个单位该产品时,成本的平均变化率;(3)生产90个与100个单位该产品时的边际成本各是多少.例3.已知函数,由定义求,并求.例4.已知函数(a,b为常数),求.7\n例5.曲线上哪一点的切线与直线平行?三、巩固练习1.若函数,则=______2.如果函数在点处的导数分别为:(1)               (2)(3)               (4),试求函数的图象在对应点处的切线的倾斜角.3.已知函数,求,,.4.求下列函数的导数(1)     (2)(3)     (4)四、作业1.若存在,则=_____2.若,则=______________3.求下列函数的导数:(1)      (2)(3)       (4)7\n4.某工厂每日产品的总成本C是日产量x的函数,即,试求:(1)当日产量为100时的平均成本;(2)当日产量由100增加到125时,增加部分的平均成本;(3)当日产量为100时的边际成本.5.设电量与时间的函数关系为,求t=3s时的电流强度.6.设质点的运动方程是,计算从t=2到t=2+之间的平均速度,并计算当=0.1时的平均速度,再计算t=2时的瞬时速度.7.若曲线的切线垂直于直线,试求这条切线的方程.8.在抛物线上,哪一点的切线处于下述位置?(1)与x轴平行(2)平行于第一象限角的平分线.(3)与x轴相交成45°角9.已知曲线上有两点A(2,0),B(1,1),求:(1)割线AB的斜率;    (2)过点A的切线的斜率;(3)点A处的切线的方程.10.在抛物线上依次取M(1,1),N(3,9)两点,作过这两点的割线,问:抛物线上哪一点处的切线平行于这条割线?并求这条切线的方程.7\n11.已知一气球的半径以10cm/s的速度增长,求半径为10cm时,该气球的体积与表面积的增长速度.12.一长方形两边长分别用x与y表示,如果x以0.01m/s的速度减小,y边以0.02m/s的速度增加,求在x=20m,y=15m时,长方形面积的变化率.13.(选做)证明:过曲线上的任何一点()()的切线与两坐标轴围成的三角形面积是一个常数.(提示:)导数的应用习题课(5月8日)教学目标  掌握导数的几何意义,会求多项式函数的单调区间、极值、最值教学重点  多项式函数的单调区间、极值、最值的求法教学难点  多项式函数极值点的求法、多项式函数最值的应用一、课前预习1.设函数在某个区间内有导数,如果在这个区间内____,则是这个区间内的_____;如果在这个区间内___,则是这个区间内的_____.2.设函数在及其附近有定义,如果的值比附近所有各点的值都大(小),则称是函数的一个______.3.如果在某个区间内有导数,则可以这样求它的极值:(1)求导数_____;      (2)求方程________的根(可能极值点);(3)如果在根的左侧附近为_,右侧附近为_,则函数在这个根处取得极_值;如果在根的左侧附近为_,右侧附近为_,则函数在这个根处取得极_值.4.设是定义在[a,b]上的函数,在(a,b)内有导数,可以这样求最值:(1)求出函数在(a,b)内的可能极值点(即方程在(a,b)内的根);(2)比较函数值,与,其中最大的一个为最大值,最小的一个为最小值.7\n二、举例例1.确定函数的单调区间.例2.设一质点的运动速度是,问:从t=0到t=10这段时间内,运动速度的改变情况怎样?例3.求函数的极值.例4.设函数在=1与=2处取得极值,试确定a和b的值,并问此时函数在与处是取极大值还是极小值?例5.求函数在[-2,2]上的最大值和最小值.例6.矩形横梁的强度与它断面的高的平方与宽的积成正比例,要将直径为d的圆木锯成强度最大的横梁,断面的宽和高应为多少?例7.求内接于抛物线与x轴所围图形内的最大矩形的面积.7\n例8.某种产品的总成本C(单位:万元)是产量x(单位:万件)的函数:,试问:当生产水平为x=10万件时,从降低单位成本角度看,继续提高产量是否得当?三、巩固练习1.若函数在区间[a,b]内恒有,则此函数在[a,b]上的最小值是____2.曲线的极值点是______________3.设函数在x=1处取得极大值-2,则a=____.4.求下列函数的单调区间:(1)    (2)5.求下列函数的极值:(1),        (2),[-4,4]6.求下列函数的最值:(1),[-3,10]    (2),[-1,4]7.设某企业每季度生产某个产品q个单位时,总成本函数为,(其中7\na>0,b>0,c>0),求:(1)使平均成本最小的产量(2)最小平均成本及相应的边际成本.8.一个企业生产某种产品,每批生产q单位时的总成本为(单位:百元),可得的总收入为(单位:百元),问:每批生产该产品多少单位时,能使利润最大?最大利润是多少?9.在曲线上找一点(),过此点作一切线,与x轴、y轴构成一个三角形,问:为何值时,此三角形面积最小?10.已知生产某种彩色电视机的总成本函数为,通过市场调查,可以预计这种彩电的年需求量为,其中p(单位:元)是彩电售价,q(单位:台)是需求量. 试求使利润最大的销售量和销售价格.7

相关文档