- 7.22 MB
- 2022-08-15 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高中数学教案(人教A版必修全套)【必修4教案|全套】目录第一章三角函数11.1任意角和弧度制21.1.2弧度制71.2.1任意角的三角函数141.2.2同角三角函数的基本关系301.3三角函数的诱导公式361.4.1正弦函数、余弦函数的图象461.4.2正弦函数、余弦函数的性质521.4.3正切函数的性质与图象631.5函数y=Asin(ωx+φ)的图象711.6三角函数模型的简单应用85第二章平面向量962.2.1向量加法运算及其几何意义1032.2.2向量减法运算及其几何意义1112.2.3向量数乘运算及其几何意义1172.3.1平面向量基本定理1232.3.2平面向量的正交分解及坐标表示1232.3.3平面向量的坐标运算1322.3.4平面向量共线的坐标表示1322.4.1平面向量数量积的物理背景及其含义1402.4.2平面向量数量积的坐标表示、模、夹角1472.5.1平面几何中的向量方法1522.5.2向量在物理中的应用举例160第三章三角恒等变换1653.1.1两角差的余弦公式1663.1.2两角和与差的正弦、余弦、正切公式1743.1.3二倍角的正弦、余弦、正切公式1893.2简单的三角恒等变换197\n第一章三角函数本章教材分析1.本章知识结构如下:2.本章学习的内容主要是:三角函数的定义、图象、性质及应用.三角函数是高中教材中的一种重要函数,与其他的函数相比,具有许多重要的特征:它以角为自变量,是周期函数.三角函数是解决其他问题的重要工具,是高中阶段学习的最后一个基本初等函数,是深化函数性质的极好素材.本章的认知基础主要是几何中圆的性质、相似形的有关知识,特别强调了单位圆的直观作用,借助单位圆直观地认识任意角、任意角的三角函数.3.本章教学的重点是三角函数的定义,同角三角函数的基本关系式,正弦函数的图象及基本性质.难点是弧度制和图象变换的准确理解和掌握.关键是学好三角函数定义.从实际教学情况来看,教学中应重视学生的画图.“五点画图”虽然简单,但却易学难掌握.在本章教学中,教师应根据学生的生活经验和已有的数学知识,通过列举熟知的实例,创设丰富的情境,使学生体会三角函数模型的意义.教学时,可结合本章引言的章头图,让学生围绕这些问题展开讨论,通过思考,让学生知道三角函数可以刻画这些周期变化规律,从而激发学生的求知欲.4.三角函数的内容一直是高考的重要内容,特别是三角函数的图象和性质,及结合三角形的基础知识为背景的三角函数知识,频频在各省高考试题中出现,难度虽有降低,却是经久不衰的高考考查内容.5.本章教学时间约需16课时,具体分配如下(仅供参考):标题课时1.1任意角和弧度制约2课时1.2任意角的三角函数约3课时1.3三角函数的诱导公式约2课时1.4三角函数的图象与性质约4课时1.5函数y=Asin(ωx+φ)的图象约2课时1.6三角函数模型的简单应用约2课时本章复习约1课时第201页\n1.1任意角和弧度制1.1.1任意角整体设计教学分析教材首先通过实际问题的展示,引发学生的认知冲突,然后通过具体例子,将初中学过的角的概念推广到任意角,在此基础上引出终边相同的角的集合的概念.这样可以使学生在已有经验(生活经验、数学学习经验)的基础上,更好地认识任意角、象限角、终边相同的角等概念.让学生体会到把角推广到任意角的必要性,引出角的概念的推广问题.本节充分结合角和平面直角坐标系的关系,建立了象限角的概念.使得任意角的讨论有一个统一的载体.教学中要特别注意这种利用几何的直观性来研究问题的方法,引导学生善于利用数形结合的思想方法来认识问题、解决问题.让学生初步学会在平面直角坐标系中讨论任意角.能熟练写出与已知角终边相同的角的集合,是本节的一个重要任务.学生的活动过程决定着课堂教学的成败,教学中应反复挖掘“探究”栏目及“探究”示图的过程功能,在这个过程上要不惜多花些时间,让学生进行操作与思考,自然地、更好地归纳出终边相同的角的一般形式.也就自然地理解了集合S={β|β=α+k·360°,k∈Z}的含义.如能借助信息技术,则可以动态表现角的终边旋转的过程,更有利于学生观察角的变化与终边位置的关系,让学生在动态的过程中体会,既要知道旋转量,又要知道旋转方向,才能准确刻画角的形成过程的道理,更好地了解任意角的深刻涵义.三维目标1.通过实例的展示,使学生理解角的概念推广的必要性,理解并掌握正角、负角、零角、象限角、终边相同角的概念及表示,树立运动变化的观点,并由此深刻理解推广之后的角的概念.2.通过自主探究、合作学习,认识集合S中k、α的准确含义,明确终边相同的角不一定相等,终边相同的角有无限多个,它们相差360°的整数倍.这对学生的终身发展,形成科学的世界观、价值观具有重要意义.3.通过类比正、负数的规定,让学生认识正角、负角并体会类比、数形结合等思想方法的运用,为今后的学习与发展打下良好的基础.重点难点教学重点:将0°—360°范围的角推广到任意角,终边相同的角的集合.教学难点:用集合来表示终边相同的角.课时安排1课时教学过程导入新课图1思路1.(情境导入)如图1,在许多学校的门口都有摆设的一些游戏机,只要指针旋转到阴影部分即可获得高额奖品.由此发问:指针怎样旋转,旋转多少度才能赢?还有我们所熟悉的体操运动员旋转的角度,自行车车轮旋转的角度,螺丝扳手的旋转角度,这些角度都怎样解释?在学生急切想知道的渴望中引入角的概念的推广.进而引入角的概念的推广的问题.思路2.(复习导入)回忆初中我们是如何定义一个角的?所学的角的范围是什么?用这些角怎样解释现实生活的一些现象,比如你原地转体一周的角度,应怎样修正角的定义才能解释这些现象?由此让学生展开讨论,进而引入角的概念的推广问题.第201页\n推进新课新知探究提出问题①你的手表慢了5分钟,你将怎样把它调整准确?假如你的手表快了1.25小时,你应当怎样将它调整准确?当时间调整准确后,分针转过了多少度角?②体操运动中有转体两周,在这个动作中,运动员转体多少度?③请两名男生(或女生、或多名男女学生)起立,做由“面向黑板转体背向黑板”的动作.在这个过程中,他们各转体了多少度?活动:让学生到讲台利用准备好的教具——钟表,实地演示拨表的过程.让学生站立原地做转体动作.教师强调学生观察旋转方向和旋转量,并思考怎样表示旋转方向.对回答正确的学生及时给予鼓励、表扬,对回答不准确的学生提示引导考虑问题的思路.角可以看作是平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形,设一条射线的端点是O,它从起始位置OA按逆时针方向旋转到终止位置OB,则形成了一个角α,点O是角的顶点,射线OA、OB分别是角α的始边和终边.我们规定:一条射线绕着它的端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.钟表的时针和分针在旋转过程中所形成的角总是负角,为了简便起见,在不引起混淆的前提下,“角α”或“∠α”可以简记作“α”.如果一条射线没有作任何旋转,我们称它形成了一个零角,零角的始边和终边重合,如果α是零角,那么α=0°.讨论结果:①顺时针方向旋转了30°;逆时针方向旋转了450°.②顺时针方向旋转了720°或逆时针方向旋转了720°.③-180°或+180°或-540°或+540°或900°或1080°……提出问题①能否以同一条射线为始边作出下列角:210°,-45°,-150°.②如何在坐标系中作出这些角,象限角是什么意思?0°角又是什么意思?活动:先让学生看书、思考、并讨论这些问题,教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生,教师提示、引导考虑问题的思路.学生作这样的角,使用一条射线作为始边,没有固定的参照,所以会作出很多形式不同的角.教师可以适时地提醒学生:如果将角放到平面直角坐标系中,问题会怎样呢?并让学生思考讨论在直角坐标系内讨论角的好处:使角的讨论得到简化,还能有效地表现出角的终边“周而复始”的现象.今后我们在坐标系中研究和讨论角,为了讨论问题的方便,我们使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.那么角的终边在第几象限,我们就说这个角是第几象限角.要特别强调角与直角坐标系的关系——角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.讨论结果:①能.②使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.角的终边在第几象限,我们就说这个角是第几象限角.这样:210°角是第三象限角;-45°角是第四象限角;-150°角是第三象限角.特别地,终边落在坐标轴上的角不属于任何一个象限,比如0°角.可以借此进一步设问:锐角是第几象限角?钝角是第几象限角?直角是第几象限角?反之如何?将角按照上述方法放在直角坐标系中,给定一个角,就有唯一一条终边与之对应,反之,对于直角坐标系中的任意一条射线OB,以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系?提出问题第201页\n①在直角坐标系中标出210°,-150°的角的终边,你有什么发现?它们有怎样的数量关系?328°,-32°,-392°角的终边及数量关系是怎样的?终边相同的角有什么关系?②所有与α终边相同的角,连同角α在内,怎样用一个式子表示出来?活动:让学生从具体问题入手,探索终边相同的角的关系,再用所准备的教具或是多媒体给学生演示:演示象限角、终边相同的角,并及时地引导:终边相同的一系列角与0°到360°间的某一角有什么关系,从而为终边相同的角的表示作好准备.为了使学生明确终边相同的角的表示方法,还可以用教具作一个32°角,放在直角坐标系内,使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,形成-32°角后提问学生这是第几象限角?是多少度角?学生对后者的回答是多种多样的.至此,教师因势利导,予以启发,学生对问题探究的结果已经水到渠成,本节难点得以突破.同时学生也在这一学习过程中,体会到了探索的乐趣,激发起了极大的学习热情,这是比学习知识本身更重要的.讨论结果:①210°与-150°角的终边相同;328°,-32°,-392°角的终边相同.终边相同的角相差360°的整数倍.设S={β|β=-32°+k·360°,k∈Z},则328°,-392°角都是S的元素,-32°角也是S的元素(此时k=0).因此,所有与-32°角的终边相同的角,连同-32°在内,都是集合S的元素;反过来,集合S的任何一个元素显然与-32°角终边相同.②所有与α终边相同的角,连同角α在内,可以构成一个集合S={β|β=k·360°+α,k∈Z}.即任一与角α终边相同的角,都可以表示成α与整数个周角的和.适时引导学生认识:①k∈Z;②α是任意角;③终边相同的角不一定相等,终边相同的角有无数多个,它们相差360°的整数倍.应用示例例1在0°—360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角.解:-950°12′=129°48′-3×360°,所以在0°—360°的范围内,与-950°12′角终边相同的角是129°48′,它是第二象限的角.点评:教师可引导学生先估计-950°12′大致是360°的几倍,然后再具体求解.例2写出终边在y轴上的角的集合.活动:终边落在y轴上,应分y轴的正方向与y轴的负方向两个.学生很容易分别写出所有与90°,270°的终边相同的角构成集合,这时应启发引导学生进一步思考:能否化简这两个式子,用一个式子表示出来.让学生观察、讨论、思考,并逐渐形成共识,教师再规范地板书出来.并强调数学的简捷性.在数学表达式子不唯一的情况下,注意采用简约的形式.图2解:在0°—360°范围内,终边在y轴上的角有两个,即90°和270°角,如图2.因此,所有与90°的终边相同的角构成集合S1={β|β=90°+k·360°,k∈Z}.而所有与270°角的终边相同的角构成集合S2={β|β=270°+k·360°,k∈Z}.于是,终边在y轴上的角的集合S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+180°+2k·180°,k∈Z}第201页\n={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.点评:本例是让学生理解终边在坐标轴上的角的表示.教学中,应引导学生体会用集合表示终边相同的角时,表示方法不唯一,要注意采用简约的形式.变式训练①写出终边在x轴上的角的集合.②写出终边在坐标轴上的角的集合.答案:①S={β|β=(2n+1)·180°,n∈Z}.②S={β|β=n·90°,n∈Z}.例3写出终边在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.图3解:如图3,在直角坐标系中画出直线y=x,可以发现它与x轴夹角是45°,在0°—360°范围内,终边在直线y=x上的角有两个:45°和225°,因此,终边在直线y=x上的角的集合S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}.S中适合-360°≤β<720°的元素是:45°-2×180°=-315°,45°-1×180°=-135°,45°+0×180°=45°,45°+1×180°=225°,45°+2×180°=405°,45°+3×180°=585°.点评:本例是让学生表示终边在已知直线的角,并找出某一范围的所有的角,即按一定顺序取k的值,应训练学生掌握这一方法.例4写出在下列象限的角的集合:①第一象限;②第二象限;③第三象限;④第四象限.活动:本题关键是写出第一象限的角的集合,其他象限的角的集合依此类推即可,如果学生阅读例题后没有解题思路,或者把①中的范围写成0°—90°,可引导学生分析360°—450°范围的角是不是第一象限的角呢?进而引导学生写出所有终边相同的角.解:①终边在第一象限的角的集合:{β|n·360°<β0,l=a-2r>0,∴0cos0.75;(2)tan1.2°0.过P作x轴的垂线,垂足为M,则线段OM的长度为a,线段MP的长度为b.根据初中学过的三角函数定义,我们有sinα==,cosα==,tanα==.讨论结果:①锐角三角函数是以锐角为自变量,边的比值为函数值的三角函数.②sinα==,cosα==,tanα==.提出问题问题①:如果改变终边上的点的位置,这三个比值会改变吗?为什么?问题②:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化?活动:教师先让学生们相互讨论,并让他们动手画画图形,看看从图形中是否能找出某种关系来.然后提问学生,由学生回答教师的问题,教师再引导学生选几个点,计算一下对应的比值,获得具体认识,并由相似三角形的性质来证明.最后可以发现,由相似三角形的知识,对于确定的角α,这三个比值不会随点P在α的终边上的位置的改变而改变.过图形教师引导学生进行对比,学生通过对比发现取到原点的距离为1的点可以使表达式简化.此时sinα==b,cosα==a,tanα==.在引进弧度制时我们看到,在半径为单位长度的圆中,角α的弧度数的绝对值等于圆心角α所对的弧长(符号由角α的终边的旋转方向决定).在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆.这样,上述P点就是α的终边与单位圆的交点.锐角三角函数可以用单位圆上点的坐标表示.同样地,我们可以利用单位圆定义任意角的三角函数.图2如图2所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y叫做α的正弦,记作sinα,即sinα=y;第201页\n(2)x叫做α的余弦,记作cosα,即cosα=x;(3)叫做α的正切,记作tanα,即tanα=(x≠0).所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.教师出示定义后,可让学生解释一下定义中的对应关系.教师应指出任意角的正弦、余弦、正切的定义是本节教学的重点.用单位圆上点的坐标表示任意角的三角函数,与学生在锐角三角函数学习中建立的已有经验有一定的距离,与学生在数学必修一的学习中建立起来的经验也有一定的距离.学生熟悉的函数y=f(x)是实数到实数的一一对应,而这里给出的三角函数首先是实数(弧度数)到点的坐标的对应,然后才是实数(弧度数)到实数(横坐标或纵坐标)的对应,这就给学生的理解造成一定的困难.教师在教学中可以在学生对锐角三角函数已有的几何直观认识的基础上,先建立直角三角形的锐角与第一象限角的联系,在直角坐标系中考查锐角三角函数,得出用角的终边上点的坐标(比值)表示锐角三角函数的结论,然后再“特殊化”引出用单位圆上点的坐标表示锐角三角函数的结论.在此基础上,再定义任意角的三角函数.在导学过程中教师应点拨学生注意,尽管我们从锐角三角函数出发来引导学生学习任意角的三角函数,但任意角的三角函数与锐角三角函数之间并没有一般与特殊的关系.教师在教学中应当使学生体会到,用单位圆上点的坐标表示锐角三角函数,不仅简单、方便,而且反映本质.教师可以引导学生通过分析三角函数定义中的自变量是什么,对应关系有什么特点,函数值是什么.特别注意α既表示一个角,又是一个实数(弧度数).“它的终边与单位圆交于点P(x,y)”包含两个对应关系.从而可以把三角函数看成是自变量为实数的函数.值得注意的是:(1)正弦、余弦、正切、余切、正割、余割都是以角为自变量,以比值为函数值的函数.(2)sinα不是sin与α的乘积,而是一个比值;三角函数的记号是一个整体,离开自变量的“sin”“tan”等是没有意义的.讨论结果:①这三个比值与终边上的点的位置无关,根据初中学过的三角函数定义,有sinα==,cosα==,tanα==.由相似三角形的知识,对于确定的角α,这三个比值不会随点P在α的终边上的位置的改变而改变.②能.提出问题问题①:学习了任意角,并利用单位圆表示了任意角的三角函数,引入一个新的函数,我们可以对哪些问题进行讨论?问题②:根据三角函数的定义,正弦、余弦、正切的定义域、值域是怎样的?活动:教师引导学生结合在数学必修一中的有关函数的问题,让学生回顾所学知识,并总结回答老师的问题,教师对学生总结的东西进行提问,并对回答正确的学生进行表扬,回答不正确或者不全面的学生给予提示和补充.教师让学生完成教科书上的“探究”,教师提问或让学生上黑板板书.按照这样的思路,我们一起来探究如下问题:请根据任意角的三角函数定义,先将正弦、余弦、正切函数在弧度制下的定义域填入下表,再将这三种函数的值在各象限的符号填入图3中的括号内.三角函数定义域sinαcosαtanα第201页\n图3教师要注意引导学生从定义出发,利用坐标平面内点的坐标的特征得定义域、函数值的符号等结论.对于正弦函数sinα=y,因为y恒有意义,即α取任意实数,y恒有意义,也就是说sinα恒有意义,所以正弦函数的定义域是R;类似地可写出余弦函数的定义域;对于正切函数tanα=,因为x=0时,无意义,即tanα无意义,又当且仅当角α的终边落在纵轴上时,才有x=0,所以当α的终边不在纵轴上时,恒有意义,即tanα恒有意义,所以正切函数的定义域是α≠+kπ(k∈Z).(由学生填写下表)三角函数定义域sinαRcosαRtanα{α|α≠+kπ,k∈Z}三角函数的定义告诉我们,各三角函数在各象限内的符号,取决于x,y的符号,当点P在第一、二象限时,纵坐标y>0,点P在第三、四象限时,纵坐标y<0,所以正弦函数值对于第一、二象限角是正的,对于第三、四象限角是负的(可制作课件展示);同样地,余弦函数在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、四象限是负的.从而完成上面探究问题.即“一全正,二正弦,三正切,四余弦”.讨论结果:①定义域、值域、单调性等.②y=sinα与y=cosα的定义域都是全体实数R,值域都是[-1,1].y=tanα的定义域是{α|α≠+kπ(k∈Z)},值域是R.应用示例思路1例1已知角α的终边经过点P0(-3,-4),求角α的正弦、余弦和正切值.活动:教师留给学生一定的时间,学生独立思考并回答.明确可以用角α终边上任意一点的坐标来定义任意角的三角函数,但用单位圆上点的坐标来定义,既不失一般性,又简单,更容易看清对应关系.教师要点拨引导学生习惯画图,充分利用数形结合,但要提醒学生注意α角的任意性.如图4,设α是一个任意角,P(x,y)是α终边上任意一点,点P与原点的距离r=>0,那么:图4①叫做α的正弦,即sinα=;第201页\n②叫做α的余弦,即cosα=;③叫做α的正切,即tanα=(x≠0).这样定义三角函数,突出了点P的任意性,说明任意角α的三角函数值只与α有关,而与点P在角的终边上的位置无关,教师要让学生充分思考讨论后深刻理解这一点.解:由已知,可得OP0==5.图5如图5,设角α的终边与单位圆交于点P(x,y).分别过点P、P0作x轴的垂线MP、M0P0,则|M0P0|=4,|MP|=-y,|OM0|=3,|OM|=-x,△OMP∽△OM0P0,于是sinα=y====;cosα=x====;tanα===.点评:本例是已知角α终边上一点的坐标,求角α的三角函数值问题.可以先根据三角形相似将这一问题化归到单位圆上,再由定义得解.变式训练求的正弦、余弦和正切值.图6解:在平面直角坐标系中,作∠AOB=,如图6.易知∠AOB的终边与单位圆的交点坐标为(,),所以sin=,cos=,tan=.例2求证:当且仅当下列不等式组成立时,角θ为第三象限角.第201页\n活动:教师引导学生讨论验证在不同的象限内各个三角函数值的符号有什么样的关系,提示学生从三角函数的定义出发来探究其内在的关系.可以知道:三角函数的定义告诉我们,各三角函数在各象限内的符号,取决于x,y的符号,当点P在第一、二象限时,纵坐标y>0,点P在第三、四象限时,纵坐标y<0,所以正弦函数值对于第一、二象限角是正的,对于第三、四象限角是负的;同样地,余弦函数在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、四象限是负的.证明:我们证明如果①②式都成立,那么θ为第三象限角.因为①sinθ<0成立,所以θ角的终边可能位于第三或第四象限,也可能位于y轴的非正半轴上;又因为②式tanθ>0成立,所以θ角的终边可能位于第一或第三象限.因为①②式都成立,所以θ角的终边只能位于第三象限.于是角θ为第三象限角.反过来请同学们自己证明.点评:本例的目的是认识不同位置的角对应的三角函数值的符号,其条件以一个不等式出现,在教学时要让学生把问题的条件、结论弄清楚,然后再给出证明.这一问题的解决可以训练学生的数学语言表达能力.变式训练(2007北京高考)已知cosθ·tanθ<0,那么角θ是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角答案:C例3求下列三角函数值:(1)sin390°;(2)cos;(3)tan(-330°).活动:引导学生总结终边相同角的表示法有什么特点,终边相同的角相差2π的整数倍,那么这些角的同一三角函数值有何关系?为什么?引导学生从角的终边的关系到角之间的关系再到函数值之间的关系进行讨论,然后再用三角函数的定义证明.由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等.由此得到一组公式(公式一):sin(α+k·2π)=sinα,cos(α+k·2π)=cosα,tan(α+k·2π)=tanα,其中k∈Z.利用公式一,可以把求任意角的三角函数值,转化为求0到2π(或0°到360°)角的三角函数值.这个公式称为三角函数的“诱导公式一”.解:(1)sin390°=sin(360°+30°)=sin30°=;(2)cosπ=cos(2π+π)=cosπ=;(3)tan(-330°)=tan(-360°+30°)=tan30°=.点评:本题主要是对诱导公式一的考查,利用公式一将任意角都转化到0—2π范围内求三角函数的值.思路2例1已知角α的终边在直线y=-3x上,则10sinα+3secα=.第201页\n活动:要让学生独立思考这一题目,本题虽然是个填空题,看似简单但内含分类讨论思想,可以找两个学生来板演这个例题.对解答思路正确的学生给以鼓励,对思路受阻的学生要引导其思路的正确性.并适时地点拨学生:假如是个大的计算题应该怎样组织步骤.解:设角α终边上任一点为P(k,-3k)(k≠0),则x=k,y=-3k,r==|k|.(1)当k>0时,r=,α是第四象限角,sinα===,secα===,∴10sinα+3secα=10×+3=-3+3=0.(2)当k<0时,r=,α为第二象限角,sinα===,secα===,∴10sinα+3secα=10×+3×()=3-3=0.综合以上两种情况均有10sinα+3secα=0.点评:本题的解题关键是要清楚当k>0时,P(k,-3k)是第四象限内的点,角α的终边在第四象限;当k<0时,P(k,-3k)是第二象限内的点,角α的终边在第二象限内,这与角α的终边在y=-3x上是一致的.变式训练设f(x)=sinx,求f(1)+f(2)+f(3)+…+f(72)的值.解:∵f(1)=sin=,f(2)=sin=,f(3)=sinπ=0,f(4)=sin=,f(5)=sin=,f(6)=sin2π=0,∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0.而f(7)=sin=sin,f(8)=sin=sin,…,f(12)=sin=sin2π,∴f(7)+f(8)+f(9)+f(10)+f(11)+f(12)=0.同理f(13)+f(14)+f(15)+f(16)+f(17)+f(18)=0,…,f(67)+f(68)+…+f(72)=0,∴f(1)+f(2)+f(3)+…+f(72)=0.求函数y=+tanα的定义域.活动:让学生先回顾求函数的定义域需要注意哪些特点,并让学生归纳出一些常见函数有意义的要求,根据函数有意义的特征来求自变量的范围.对于三角函数这种特殊的函数在解三角不等式时要结合三角函数的定义进行.求含正切函数的组合型三角函数的定义域时,正切函数本身的定义域往往被忽略,教师提醒学生应引起注意这种情况.同时,函数的定义域是一个集合,所以结论要用集合形式表示.第201页\n解:要使函数y=+tanα有意义,则sinα≥0且α≠kπ+(k∈Z).由正弦函数的定义知道,sinα≥0就是角α的终边与单位圆的交点的纵坐标非负.∴角α的终边在第一、二象限或在x轴上或在y轴非负半轴上,即2kπ≤α≤π+2kπ(k∈Z).∴函数的定义域是{α|2kπ≤α<+2kπ或+2kπ<α≤(2k+1)π,k∈Z}.点评:本题的关键是弄清楚要使函数式有意义,必须sinα≥0,且tanα有意义,由此推导出α的取值范围就是函数的定义域.变式训练求下列函数的定义域:(1)y=sinx+cosx;(2)y=sinx+tanx;(3)y=;(4)y=+tanx.解:(1)∵使sinx,cosx有意义的x∈R,∴y=sinx+cosx的定义域为R.(2)要使函数有意义,必须使sinx与tanx有意义.∴有∴函数y=sinx+tanx的定义域为{x|x≠kπ+,k∈Z}.(3)要使函数有意义,必须使tanx有意义,且tanx≠0.∴有(k∈Z),∴函数y=的定义域为{x|x≠,k∈Z}.(4)当sinx≥0且tanx有意义时,函数有意义,∴有(k∈Z).∴函数y=+tanx的定义域为[2kπ,2kπ+)∪(2kπ+,(2k+1)π](k∈Z).知能训练课本本节练习.解答:1.sin=;cos=;tan=点评:根据定义求某个特殊角的三角函数值.2.sinθ=;cosθ=;tanθ=.点评:已知角α终边上一点的坐标,由定义求角α的三角函数值.第201页\n3.角α0°90°180°270°360°角α的弧度数0Π2πsinα010-10cosα10-101tanα0不存在0不存在0点评:熟悉特殊角的三角函数值,并进一步地理解公式一.4.当α为钝角时,cosα和tanα取负值.点评:认识与三角形内角有关的三角函数值的符号.5.(1)正;(2)负;(3)零;(4)负;(5)正;(6)正.点评:认识不同位置的角对应的三角函数值的符号.6.(1)①③或①⑤或③⑤;(2)①④或①⑥或④⑥;(3)②④或②⑤或④⑤;(4)②③或②⑥或③⑥.点评:认识不同象限的角对应的三角函数值的符号.7.(1)0.8746;(2);(3)0.5;(4)1.点评:求三角函数值,并进一步地认识三角函数的定义及公式一.课堂小结本节课我们给出了任意角三角函数的定义,并且讨论了正弦、余弦、正切函数的定义域,任意角的三角函数实质上是锐角三角函数的扩展,是将锐角三角函数中边的比变为坐标与距离、坐标与坐标的比,记忆方法可用锐角三角函数类比记忆,至于三角函数的定义域可由三角函数的定义分析得到.本节课我们重点讨论了两个内容,一是三角函数在各象限内的符号,二是一组公式,两者的作用分别是:前者确定函数值的符号,后者将任意角的三角函数化为0°到360°角的三角函数,这两个内容是我们日后学习的基础,经常要用,请同学们熟记.作业课本习题1.2A组题1—9.设计感想关于三角函数定义法,总的说来就两种:“单位圆定义法”与“终边定义法”.这两种方法本质上是一致的.正因为此,各种数学出版物中,两种定义方法都有采用.在学习本节的过程中可以与初中学习的三角函数定义进行类比、学习.理解任意角三角函数的定义不但是学好本节内容的关键,也是学好本章内容的关键.在教学中,教师应该充分调动学生独立思考和总结的能力,以巩固对知识的理解和掌握.教师在教学中,始终引导学生紧扣三角函数的定义,善于利用数形结合.在利用三角函数定义进行求值时,应特别强调要注意横向联系,即不仅仅能求出该值,还要善于观察该值与其他三角函数值之间的联系,找出规律来求解.(设计者:房增凤)第2课时导入新课思路1.(情境导入)同学们都在一些旅游景地或者在公园中见过大观览车,大家是否想过大观览车在转动过程中,座椅离地面的高度随着转动角度的变化而变化,二者之间有怎样的相依关系呢?思路2.第201页\n(复习导入)我们研究了三角函数在各象限内的符号,学习了将任意角的三角函数化成0°—360°角的三角函数的一组公式,前面还分析讨论了三角函数的定义域,这些内容的研究,都是建立在任意角的三角函数定义之上的,这些知识在以后我们继续学习“三角”内容时,是经常、反复运用的,请同学们务必在理解的基础上要加强记忆.由三角函数的定义我们知道,对于角α的各种三角函数我们都是用比值来表示的,或者说是用数来表示的,今天我们再来学习正弦、余弦、正切函数的另一种表示方法——几何表示法.我们知道,直角坐标系内点的坐标与坐标轴的方向有关.因此自然产生一个想法是以坐标轴的方向来规定有向线段的方向,以使它们的取值与点的坐标联系起来.推进新课新知探究提出问题问题①:回忆上节课学习的三角函数定义并思考:三角函数的定义能否用几何中的方法来表示,应怎样表示呢?问题②:回忆初中学过的线段,若加上方向会怎样呢?什么是有向线段?活动:指导学生在平面直角坐标系内作出单位圆,设任意角α的顶点在原点,始边与x轴的非负半轴重合,终边与单位圆相交于点P(x,y),x轴的正半轴与单位圆相交于A(1,0),过P作x轴的垂线,垂足为M;过A作单位圆的切线,这条切线必平行于y轴(垂直于同一条直线的两直线平行),设它与角α的终边或其反向延长线交于点T.教师点拨学生观察线段的方向与点P的坐标.显然,线段OM的长度为|x|,线段MP的长度为|y|,它们都只能取非负值.当角α的终边不在坐标轴上时,我们可以把OM、MP都看作带有方向的线段:如果x>0,OM与x轴同向,规定此时OM具有正值x;如果x<0,OM与x轴正向相反(即反向),规定此时OM具有负值x,所以不论哪一种情况,都有OM=x.如果y>0,把MP看作与y轴同向,规定此时MP具有正值y;如果y<0,把MP看作与y轴反向,规定此时MP具有负值y,所以不论哪一种情况,都有MP=y.引导学生观察OM、MP都是带有方向的线段,这种被看作带有方向的线段叫做有向线段.于是,根据正弦、余弦函数的定义,就有sinα===y=MP,cosα===x=OM.这两条与单位圆有关的有向线段MP、OM分别叫做角α的正弦线、余弦线.类似地,我们把OA、AT也看作有向线段,那么根据正切函数的定义和相似三角形的知识,就有tanα===AT.这条与单位圆有关的有向线段AT,叫做角α的正切线.讨论结果:①能.②被看作带有方向的线段叫做有向线段.提出问题问题①:怎样把三角函数线与有向线段联系在一起?问题②:正弦线、余弦线、正切线在平面直角坐标系中是怎样规定的?当角α的终边变化时,它们有什么变化?活动:师生共同讨论,最后一致得出以下几点:(1)当角α的终边在y轴上时,余弦线变成一个点,正切线不存在.(2)当角α的终边在x轴上时,正弦线、正切线都变成点.(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x轴的公共点为起点.(5)三种有向线段的正负与坐标轴正反方向一致,三种有向线段的数量与三种三角函数值相同.正弦线、余弦线、正切线统称为三角函数线.讨论结果:①略.②略.第201页\n示例应用思路1例1如图7,α,β的终边分别与单位圆交于点P,Q,过A(1,0)作切线AT,交图7射线OP于点T,交射线OQ的反向延长线于T′,点P、Q在x轴上的射影分别为点M、N,则sinα=______________,cosα=______________,tanα=______________,sinβ=______________,cosβ=______________,tanβ=______________.活动:根据三角函数线的定义可知,sinα=MP,cosα=OM,tanα=AT,sinβ=NQ,cosβ=ON,tanβ=AT′.答案:MPOMATNQONAT′点评:掌握三角函数线的作法,注意用有向线段表示三角函数线时,字母的书写顺序不能随意颠倒.变式训练利用三角函数线证明|sinα|+|cosα|≥1.解:当α的终边落在坐标轴上时,正弦(或余弦)线变成一个点,而余弦(或正弦)线的长等于r,所以|sinα|+|cosα|=1.当角α终边落在四个象限时,利用三角形两边之和大于第三边有|sinα|+|cosα|=|OM|+|MP|>1,∴|sinα|+|cosα|≥1.例2在单位圆中画出适合下列条件的角α的终边或终边所在的范围,并由此写出角α的集合:(1)sinα=;(2)sinα≥.活动:引导学生画出单位圆,对于(1),可设角α的终边与单位圆交于A(x,y),则sinα=y,所以要作出满足sinα=的终边,只要在单位圆上找出纵坐标为的点A,则OA即为角α的终边;对于(2),可先作出满足sinα=的角的终边,然后根据已知条件确定角α的范围.图8解:(1)作直线y=交单位圆于A与B两点,连结OA,OB,则OA与OB为角α的终边,如图8所示.故满足条件的角α的集合为{α|α=2kπ+或α=2kπ+,k∈Z}.(2)作直线y=交单位圆于A与B两点,连结OA,OB,则OA与OB围成的区域(如图中的阴影部分)即为角α的终边所在的范围.故满足条件的角α的集合为{α|2kπ+≤α≤2kπ+,k∈Z}.第201页\n点评:在解简单的特殊值(如±,等)的等式或不等式时,应首先在单位圆内找到对应的终边(作纵坐标为特殊值的直线与单位圆相交,连结交点与坐标原点作射线),一般情况下,用(0,2π)内的角表示它,然后画出满足原等式或不等式的区域,用集合表示出来.变式训练已知sinα≥,求角α的集合.解:作直线y=交单位圆于点P,P′,则sin∠POx=sin∠P′Ox=,在[0,2π)内∠POx=,∠P′Px=.∴满足条件的集合为{α|2kπ+≤α≤2kπ+,k∈Z}.思路2例1求下列函数的定义域:(1)y=logsinx(2cosx+1);(2)y=lg(3-4sin2x).活动:先引导学生求出x所满足的条件,这点要提醒学生注意,研究函数必须在自变量允许的范围内研究,否则无意义.再利用三角函数线画出满足条件的角x的终边范围.求解时,可根据各种约束条件,利用三角函数线画出角x满足条件的终边范围,写出适合条件的x的取值集合.解:(1)由题意,得则(k∈Z).∴函数的定义域为{x|2kπ0,∴sin2x<.∴1;(2)sin2α+cos2α=1.图12证明:如图12,记角α与单位圆的交点为P,过P作PM⊥x轴于M,则sinα=MP,cosα=OM.(1)在Rt△OMP中,MP+OM>OP,即sinα+cosα>1.(2)在Rt△OMP中,MP2+OM2=OP2,即sin2α+cos2α=1.2.求下列函数的定义域:(1)y=;(2)y=.答案:(1)x∈[kπ-,kπ+],k∈Z.(2)x∈[+2kπ,+2kπ)∪(+2kπ,+2kπ)∪(+2kπ,+2kπ)∪(+2kπ,+2kπ],k∈Z.设计感想对于三角函数线,开始时学生可能不是很理解,教师应该充分发挥好图象的直观作用,让学生通过图形来感知、了解三角函数线的定义.在学生理解了正弦线、余弦线、正切线的定义后,教师应引导学生会利用三角函数线来发现、总结、归纳正弦函数、余弦函数、正切函数的性质.以便为以后更好地学习三角函数的图象和性质打下良好的基础.教师要让学生对三角函数线了解即可,要让学生利用任意角的三角函数线来感知对应的三角函数图象的变化趋势,不要再向深处挖掘,因为三角函数线能解决的问题都可以用三角函数的图象来解决.教师在教学中要搞好师生互动,让学生自己动脑、动手,多启发学生善于发现问题、提出问题、解决问题的能力,让学生学会独立思考和归纳总结知识的能力.第201页\n1.2.2同角三角函数的基本关系整体设计教学分析与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,是按照一切从定义出发的原则进行的,通过对基本关系的推导,应注意学生重视对基本概念学习的良好习惯的形成,学会通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵.同角三角函数的基本关系式将“同角”的四种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,至于角的表达形式是至关重要的,如sin24π+cos24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tanα中的α是使得tanα有意义的值,即α≠kπ+,k∈Z.已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根.三维目标1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明.2.同角三角函数的基本关系式主要有三个方面的应用:(1)求值(知一求二);(2)化简三角函数式;(3)证明三角恒等式.通过本节的学习,学生应明了如何进行三角函数式的化简与三角恒等式的证明.3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法.重点难点教学重点:课本的三个公式的推导及应用.教学难点:课本的三个公式的推导及应用.课时安排1课时教学过程导入新课思路1.先请学生回忆任意角的三角函数定义,然后引导学生先计算后观察以下各题的结果,并鼓励学生大胆进行猜想,教师点拨学生能否用定义给予证明,由此展开新课.计算下列各式的值:(1)sin290°+cos290°;(2)sin230°+cos230°;(3);(4).推进新课新知探究提出问题①在以下两个等式中的角是否都可以是任意角?若不能,角α应受什么影响?图1如图1,以正弦线MP、余弦线OM和半径OP三者的长构成直角三角形,而且OP=1.第201页\n由勾股定理有OM2+MP2=1.因此x2+y2=1,即sin2α+cos2α=1(等式1).显然,当α的终边与坐标轴重合时,这个公式也成立.根据三角函数的定义,当α≠kπ+,k∈Z时,有=tanα(等式2).这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α的正切.②对于同一个角的正弦、余弦、正切,至少应知道其中的几个值才能利用基本关系式求出其他的三角函数的值.活动:问题①先让学生用自己的语言叙述同角三角函数的基本关系,然后教师点拨学生思考这两个公式的用处.同时启发学生注意“同一个角”这个前提条件,及使等式分别有意义的角的取值范围.问题②可让学生展开讨论,点拨学生从方程的角度进行探究,对思考正确的学生给予鼓励,对没有思路的学生教师点拨其思考的方法,最后得出结论“知一求二”.讨论结果:①在上述两个等式中,不是所有的角都可以是任意角,在第一个等式中,α可以是任意角,在第二个等式中α≠kπ+,k∈Z.②在上述两个等式中,只要知道其中任意一个,就可以求出其余的两个.知道正弦(余弦),就可以先求出余弦(正弦),用等式1;进而用第二个等式2求出正切.应用示例思路1例1已知sinα=,并且α是第二象限的角,求cosα,tanα的值.活动:同角三角函数的基本关系学生应熟练掌握,先让学生接触比较简单的应用问题,明确和正确地应用同角三角函数关系.可以引导学生观察与题设条件最接近的关系式是sin2α+cos2α=1,故cosα的值最容易求得,在求cosα时需要进行开平方运算,因此应根据角α所在的象限确定cosα的符号,在此基础上教师指导学生独立地完成此题.解:因为sin2α+cos2α=1,所以cos2α=1-sin2α=1-()2=.又因为α是第二象限角,所以cosα<0.于是cosα==,从而tanα==×()=.点评:本题是直接应用关系求解三角函数值的问题,属于比较简单和直接的问题,让学生体会关系式的用法.应使学生清楚tanα=中的负号来自α是第二象限角,这也是根据商数关系直接运算后的结果,它不同于在选用平方关系式的三角函数符号的确定.例2已知cosα=,求sinα,tanα的值.活动:教师先引导学生比较例1、例2题设条件的相异处,根据题设条件得出角的终边只能在第二或第三象限.启发学生思考仅有cosα<0是不能确定角α的终边所在的象限,它可能在x轴的负半轴上(这时cosα=-1).解:因为cosα<0,且cosα≠-1,所以α是第二或第三象限角.如果α是第二象限角,那么第201页\nsinα===,tanα==×()=,如果α是第三象限角,那么sinα=,tanα=.点评:在已知角的一个三角函数值但是不知道角所在的象限的时候,应先根据题目条件讨论角的终边所在的象限,分类讨论所有的情况,得出所有的解.思路2例1已知tanα为非零实数,用tanα表示sinα、cosα.活动:引导学生思考讨论:角的终边在什么位置;能否直接利用基本关系式求出sinα或cosα的值.由tanα≠0,只能确定α的终边不在坐标轴上.关于sinα、cosα、tanα的关系式只有tanα=,在这个式子中必须知道其中两个三角函数值,才能求出第三个,因此像这类问题的求解,不能一步到位,需要公式的综合应用.其步骤是:先根据条件判断角的终边的位置,讨论出现的所有情况.然后根据讨论的结果,利用基本关系式求解.分情况求出cosα,进而求出sinα.解:因为sin2α+cos2α=1,所以sin2α=1-cos2α.又因为tanα=,所以tan2α==.于是=1+tan2α,cos2α=.由tanα为非零实数,可知角α的终边不在坐标轴上,从而cosα=sinα=cosαtanα=点评:要求学生灵活运用三角函数公式进行变形、化简、求解.需要学生认真细致分析题目的条件,灵活运用公式,需要较高的思维层次.变式训练已知cosα≠0,用cosα表示sinα、tanα.解:本题仿照上题可以比较顺利完成.sinα=第201页\ntanα=例2求证:活动:先让学生讨论探究证明方法,教师引导思考方向.教材中介绍了两种证明方法:证法一是从算式一边到另一边的证法,算式右边的非零因式1+sinα,在左边没有出现,可考虑左边式子的分子、分母同乘以1+sinx,再化简;在证法二中可以这样分析,要让算式成立,需证cos2x=(1+sinx)(1-sinx),即cos2x=1-sin2x,也就是sin2x+cos2x=1,由平方关系可知这个等式成立,将上述分析过程逆推便可以证得原式成立.证法一:由cosx≠0,知sinx≠1,所以1+sinx≠0,于是左边=所以原式成立.证法二:因为(1-sinx)(1+sinx)=1-sin2x=cos2x=cosxcosx,且1-sinx≠0,cosx≠0,所以教师启发学生进一步探究:除了证法一和证法二外你可否还有其他的证明方法.教师和学生一起讨论,由此可探究出证法三.依据“a-b=0a=b”来证明恒等式是常用的证明方法,由学生自己独立完成.证法三:因为所以点评:这是一道很有训练价值的经典例题,教师要充分利用好这个题目.从这个例题可以看出,证明一个三角恒等式的方法有很多.证明一个等式,可以从它的任何一边开始,证得它等于另一边;还可以先证得另一个等式成立,从而推出需要证明的等式成立.例3化简活动:引导学生探究:原式结果为cos440°时是不是最简形式,还应怎么办?教师引导学生运用诱导公式一化简为cos80°,由于cos80°>0,因此=|cos80°|=cos80°,此题不难,让学生独立完成.解:原式====cos80°.点评:恰当利用平方关系和诱导公式化简三角函数式.提醒学生注意化简后的简单的三角函数式应尽量满足以下几点:(1)所含的三角函数种类最少;(2)能求值(指准确值)的尽量求值;(3)不含特殊角的三角函数值.变式训练化简:答案:cos40°-sin40°.点评:提醒学生注意:1±2sinαcosα=sin2α+cos2α±2sinαcosα=(sinα±cosα)2,这是一个很重要的结论.知能训练课本本节练习.第201页\n解答:1.sinα=,tanα=.2.当φ为第二象限角时,sinφ=,cosφ=当φ为第四象限角时,sinφ=,cosφ=.3.当θ为第一象限角时,cosθ≈0.94,tanθ≈0.37.当θ为第二象限角时,cosθ≈-0.94,tanθ≈-0.37.4.(1)cosθtanθ=cosθ=sinθ;(2)5.(1)左=(sin2α+cos2α)(sin2α-cos2α)=sin2α-cos2α=右;(2)左=sin2α(sin2α+cos2α)+cos2α=sin2α+cos2α=1=右.课堂小结由学生回顾本节所学的方法知识:①同角三角函数的基本关系式及成立的条件,②根据一个任意角的正弦、余弦、正切中的一个值求出其余的两个值(可以简称“知一求二”)时要注意这个角的终边所在的位置,从而出现一组或两组或四组(以两组的形式给出).“知一求二”的解题步骤一般为:先确定角的终边位置,再根据基本关系式求值,若已知正弦或余弦,则先用平方关系,再用其他关系求值;若已知正切或余切,则构造方程组求值.教师和学生一起归纳三角函数式化简与三角恒等式的证明的一般方法及应注意的问题,并让学生总结本节用到的思想方法.作业1.化简(1+tan2α)cos2α;2.已知tanα=2,求的值.答案:1.1;2.3.设计感想公式的推导和应用是本节课的重点,也是本节课的难点.公式的应用实际上是求可化为完全平方的三角函数式的“算术平方根”的化简题和证明题,这类问题可按下列情形分别处理:(1)如果这个三角函数式的值的符号可以确定,则可以根据算术平方根的定义直接得到结果;(2)如果这个三角函数式的值的符号不可以确定,则可根据题设条件,经过合理的分类讨论得到结果.三角函数式的化简,体现了由繁到简的最基本的数学解题原则,它不仅需要学生能熟悉和灵活运用所学的三角公式,还需要熟悉和灵活运用这些公式的等价形式,同时,这类问题还具有较强的综合性,对其他非三角知识的灵活运用也具有较高的要求,在教学时要注意进行相关知识的复习.证明恒等式的过程实质上就是分析转化和消去等式两边差异来促成统一的过程,证明时常用的方法一般有以下三种:(1)依据相等关系的传递性,从等式一边开始,证明它等于另一边,证明时一般遵循由繁到简的原则.(2)依据“等于同量的两个量相等”证明左、右两边等于同一个式子.(3)依据等价转化思想,证明与原式等价的另一个式子成立,从而推出原式成立.第201页\n教材上在运用这一方法时使用的是综合法,初学恒等式的证明时,运用等价转化的方法可以使证明的思路更清楚一些,实际上,使用综合法时不一定要求进行等价转化,只需证明等式成立的充分条件即可(教师知道即可),证明方法中分别运用到了分式的基本性质和算式的基本性质.使学生明白,如果算式中含有正弦、余弦、正切等三角函数,为了便于将算式两边沟通,可通过“切化弦”使两边的三角函数相同.第201页\n1.3三角函数的诱导公式整体设计教学分析本节主要是推导诱导公式二、三、四,并利用它们解决一些求解、化简、证明问题.本小节介绍的五组诱导公式在内容上既是公式一的延续,又是后继学习内容的基础,它们与公式一组成的六组诱导公式,用于解决求任意角的三角函数值的问题以及有关三角函数的化简、证明等问题.在诱导公式的学习中,化归思想贯穿始末,这一典型的数学思想,无论在本节中的分析导入,还是利用诱导公式将求任意角的三角函数值转化为求锐角的三角函数值,均清晰地得到体现,在教学中注意数学思想渗透于知识的传授之中,让学生了解化归思想,形成初步的化归意识,特别是在本课时的三个转化问题引入后,为什么确定180°+α角为第一研究对象,-α角为第二研究对象,正是化归思想的运用.公式二、公式三与公式四中涉及的角在本课的分析导入时为不大于90°的非负角,但是在推导中却把α拓广为任意角,这一思维上的转折使学生难以理解,甚至会导致对其必要性的怀疑,因此它成为本课时的难点所在.课本例题实际上是诱导公式的综合运用,难点在于需要把所求的角看成是一个整体的任意角.学生第一次接触到此题型,思维上有困难,要多加引导分析,另外,诱导公式中角度制亦可转化为弧度制,但必须注意同一个公式中只能采取一种制度,因此要加强角度制与弧度制的转化的练习.三维目标1.通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想.2.通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用.3.进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力.重点难点教学重点:五个诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证明等.教学难点:六组诱导公式的灵活运用.课时安排2课时教学过程第1课时导入新课思路1.①利用单位圆表示任意角的正弦值和余弦值.②复习诱导公式一及其用途.思路2.在前面的学习中,我们知道终边相同的角的同名三角函数值相等,即公式一,并且利用公式一可以把绝对值较大的角的三角函数转化为0°到360°(0到2π)内的角的三角函数值,求锐角三角函数值,我们可以通过查表求得,对于90°到360°(到2π)范围内的角的三角函数怎样求解,能不能有像公式一那样的公式把它们转化到锐角范围内来求解,这一节就来探讨这个问题.推进新课新知探究提出问题由公式一把任意角α转化为[0°,360°)内的角后,如何进一步求出它的三角函数值?活动:第201页\n在初中学习了锐角的三角函数值可以在直角三角形中求得,特殊角的三角函数值学生记住了,对非特殊锐角的三角函数值可以通过查数学用表或是用计算器求得.教师可组织学生思考讨论如下问题:0°到90°的角的正弦值、余弦值用何法可以求得?90°到360°的角β能否与锐角α相联系?通过分析β与α的联系,引导学生得出解决设问的一种思路:若能把求[90°,360°)内的角β的三角函数值,转化为求有关锐角α的三角函数值,则问题将得到解决,适时提出,这一思想就是数学的化归思想,教师可借此向学生介绍化归思想.图1讨论结果:通过分析,归纳得出:如图1.β=提出问题①锐角α的终边与180°+α角的终边位置关系如何?②它们与单位圆的交点的位置关系如何?③任意角α与180°+α呢?活动:分α为锐角和任意角作图分析:如图2.图2引导学生充分利用单位圆,并和学生一起讨论探究角的关系.无论α为锐角还是任意角,180°+α的终边都是α的终边的反向延长线,所以先选择180°+α为研究对象.利用图形还可以直观地解决问题②,角的终边与单位圆的交点的位置关系是关于原点对称的,对应点的坐标分别是P(x,y)和P′(-x,-y).指导学生利用单位圆及角的正弦、余弦函数的定义,导出公式二:sin(180°+α)=-sinα,cos(180°+α)=-cosα.并指导学生写出角为弧度时的关系式:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.引导学生观察公式的特点,明了各个公式的作用.讨论结果:①锐角α的终边与180°+α角的终边互为反向延长线.②它们与单位圆的交点关于原点对称.③任意角α与180°+α角的终边与单位圆的交点关于原点对称.提出问题①有了以上公式,我们下一步的研究对象是什么?②-α角的终边与角α的终边位置关系如何?活动:让学生在单位圆中讨论-α与α的位置关系,这时可通过复习正角和负角的定义,启发学生思考:任意角α和-α的终边的位置关系;它们与单位圆的交点的位置关系及其坐标.探索、概括、对照公式二的推导过程,由学生自己完成公式三的推导,即:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.第201页\n教师点拨学生注意:无论α是锐角还是任意角,公式均成立.并进一步引导学生观察分析公式三的特点,得出公式三的用途:可将求负角的三角函数值转化为求正角的三角函数值.讨论结果:①根据分析下一步的研究对象是-α的正弦和余弦.②-α角的终边与角α的终边关于x轴对称,它们与单位圆的交点坐标的关系是横坐标相等,纵坐标互为相反数.提出问题①下一步的研究对象是什么?②π-α角的终边与角α的终边位置关系如何?活动:讨论π-α与α的位置关系,这时可通过复习互补的定义,引导学生思考:任意角α和π-α的终边的位置关系;它们与单位圆的交点的位置关系及其坐标.探索、概括、对照公式二、三的推导过程,由学生自己完成公式四的推导,即:sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα.强调无论α是锐角还是任意角,公式均成立.引导学生观察分析公式三的特点,得出公式四的用途:可将求π-α角的三角函数值转化为求角α的三角函数值.让学生分析总结诱导公式的结构特点,概括说明,加强记忆.我们可以用下面一段话来概括公式一—四:α+k·2π(k∈Z),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.进一步简记为:“函数名不变,符号看象限”.点拨、引导学生注意公式中的α是任意角.讨论结果:①根据分析下一步的研究对象是π-α的三角函数;②π-α角的终边与角α的终边关于y轴对称,它们与单位圆的交点坐标的关系是纵坐标相等,横坐标互为相反数.示例应用思路1例1利用公式求下列三角函数值:(1)cos225°;(2)sin;(3)sin();(4)cos(-2040°).活动:这是直接运用公式的题目类型,让学生熟悉公式,通过练习加深印象,逐步达到熟练、正确地应用.让学生观察题目中的角的范围,对照公式找出哪个公式适合解决这个问题.解:(1)cos225°=cos(180°+45°)=-cos45°=;(2)sin=sin(4π)=-sin=;(3)sin()=-sin=-sin(5π+)=-(-sin)=;(4)cos(-2040°)=cos2040°=cos(6×360°-120°)=cos120°=cos(180°-60°)=-cos60°=.点评:利用公式一—四把任意角的三角函数转化为锐角的三角函数,一般可按下列步骤进行:第201页\n上述步骤体现了由未知转化为已知的转化与化归的思想方法.变式训练利用公式求下列三角函数值:(1)cos(-510°15′);(2)sin(π).解:(1)cos(-510°15′)=cos510°15′=cos(360°+150°15′)=cos150°15′=cos(180°-29°45′)=-cos29°45′=-0.8682;(2)sin(π)=sin(-3×2π)=sin=.例22007全国高考,1cos330°等于()A.B.C.D.答案:C变式训练化简:解:===.例3化简cos315°+sin(-30°)+sin225°+cos480°.活动:这是要求学生灵活运用诱导公式进行变形、求值与证明的题目.利用诱导公式将有关角的三角函数化为锐角的三角函数,再求值、合并、约分.解:cos315°+sin(-30°)+sin225°+cos480°=cos(360°-45°)-sin30°+sin(180°+45°)+cos(360°+120°)=cos(-45°)-sin45°+cos120°第201页\n=cos45°+cos(180°-60°)=-cos60°=-1.点评:利用诱导公式化简,是进行角的转化,最终达到统一角或求值的目的.变式训练求证:.分析:利用诱导公式化简较繁的一边,使之等于另一边.证明:左边====tanθ=右边.所以原式成立.规律总结:证明恒等式,一般是化繁为简,可以化简一边,也可以两边都化简.知能训练课本本节练习1—3.解答:1.(1)-cos;(2)-sin1;(3)-sin;(4)cos70°6′.点评:利用诱导公式转化为锐角三角函数.2.(1);(2);(3)0.6428;(4).点评:先利用诱导公式转化为锐角三角函数,再求值.3.(1)-sin2αcosα;(2)sin4α.点评:先利用诱导公式变形为角α的三角函数,再进一步化简.课堂小结本节课我们学习了公式二、公式三、公式四三组公式,这三组公式在求三角函数值、化简三角函数式及证明三角恒等式时是经常用到的,为了记牢公式,我们总结了“函数名不变,符号看象限”的简便记法,同学们要正确理解这句话的含义,不过更重要的还是应用,我们要多加练习,切实掌握由未知向已知转化的化归思想.作业课本习题1.3A组2、3、4.设计感想一、有关角的终边的对称性(1)角α的终边与角π+α的终边关于原点对称.(2)角α的终边与角-α的终边关于x轴对称.(3)角α的终边与角π-α的终边关于y轴对称.二、三角函数的诱导公式应注意的问题(1)α+k·2π(k∈Z第201页\n),-α,π±α的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数的符号;可简单记忆为:“函数名不变,符号看象限.”(2)公式中的α是任意角.(3)利用诱导公式一、二、三、四,可以把任意角的三角函数值转化为锐角的三角函数值.基本步骤是:任意负角的三角函数相应的正角的三角函数0到2π角的三角函数锐角的三角函数三角函数.即负化正,大化小,化为锐角再查表.(设计者:沈献宏)第2课时导入新课上一节课我们研究了诱导公式二、三、四.现在请同学们回忆一下相应的公式.提问多名学生上黑板默写公式.在此基础上,我们今天继续探究别的诱导公式,揭示课题.推进新课新知探究提出问题终边与角α的终边关于直线y=x对称的角有何数量关系?活动:我们借助单位圆探究终边与角α的终边关于直线y=x对称的角的数量关系.教师充分让学生探究,启发学生借助单位圆,点拨学生从终边关于直线y=x对称的两个角之间的数量关系,关于直线y=x对称的两个点的坐标之间的关系进行引导.图3讨论结果:如图3,设任意角α的终边与单位圆的交点P1的坐标为(x,y),由于角-α的终边与角α的终边关于直线y=x对称,角-α的终边与单位圆的交点P2与点P1关于直线y=x对称,因此点P2的坐标是(y,x),于是,我们有sinα=y,cosα=x,cos(-α)=y,sin(-α)=x.从而得到公式五:cos(-α)=sinα,sin(-α)=cosα.提出问题能否用已有公式得出+α的正弦、余弦与α的正弦、余弦之间的关系式?第201页\n活动:教师点拨学生将+α转化为π-(-α),从而利用公式四和公式五达到我们的目的.因为+α可以转化为π-(-α),所以求+α角的正余弦问题就转化为利用公式四接着转化为利用公式五,这时可以让学生独立推导公式六.讨论结果:公式六Sin(+α)=cosα,cos(+α)=-sinα.提出问题你能概括一下公式五、六吗?活动:结合上一堂课研究公式一—四的共同特征引导学生寻求公式五、六的共同特征,指导学生用类比的方法即可将公式五和公式六进行概括.讨论结果:±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.进一步可以简记为:函数名改变,符号看象限.利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化.公式一—六都叫做诱导公式.提出问题学了六组诱导公式及上例的结果后,能否进一步归纳概括诱导公式,怎样概括?讨论结果:诱导公式一—四,函数名称不改变,这些公式左边的角分别是2kπ+α(k∈Z),π±α,-α(可看作0-α).其中2kπ,π,0是横坐标轴上的角,因此,上述公式可归结为横坐标轴上的角±α,函数名称不改变.而公式五、六及上面的例1,这些公式左边的角分别是±α,-α.其中,是纵坐标轴上的角,因此这些公式可归结为纵坐标上的角±α,函数名称要改变.两类诱导公式的符号的考查是一致的,故而所有的诱导公式可用十个字来概括:纵变横不变,符号看象限.教师指点学习方法:如果我们孤立地记忆这么多诱导公式,那么我们的学习将十分苦累,且效率低下.学习过程中,能挖掘各个公式的本质特征,寻求它们之间的共性,那么我们对数学公式的记忆就不再是负担了.因此,要求大家多做这方面的工作,以后数学的学习就不再是枯燥无味的了.示例应用思路1例1证明(1)sin(-α)=-cosα;(2)cos(-α)=-sinα.活动:直接应用公式五、六或者通过转化后利用公式五、六解决化简、证明问题.证明:(1)sin(-α)=sin[π+(-α)]=-sin(-α)=-cosα;(2)cos(-α)=cos[π+(-α)]=-cos(-α)=-sinα.点评:由公式五及六推得±α的三角函数值与角α的三角函数值之间的关系,从而进一步可以推广到π(k∈Z)的情形.本例的结果可以直接作为诱导公式直接使用.第201页\n例2化简活动:仔细观察题目中的角,哪些是可以利用公式二—四的,哪些是可以利用公式五、六的.认真应用诱导公式,达到化简的目的.解:原式====-tanα.思路2例1(1)已知f(cosx)=cos17x,求证:f(sinx)=sin17x;(2)对于怎样的整数n,才能由f(sinx)=sinnx推出f(cosx)=cosnx?活动:对诱导公式的应用需要较多的思维空间,善于观察题目特点,要灵活变形.观察本例条件与结论在结构上类似,差别在于一个含余弦,一个含正弦,注意到正弦、余弦转化可借助sinx=cos(-x)或cosx=sin(-x).要善于观察条件和结论的结构特征,找出它们的共性与差异;要注意诱导公式可实现角的形式之间及互余函数名称之间的转移.证明:(1)f(sinx)=f[cos(-x)]=cos[17(-x)]=cos(8π+-17x)=cos(-17x)=sin17x,即f(sinx)=sin17x.(2)f(cosx)=f[sin(-x)]=sin[n(-x)]=sin(-nx)=故所求的整数n=4k+1(k∈Z).点评:正确合理地运用公式是解决问题的关键所在.变式训练已知cos(-α)=m(m≤1),求sin(-α)的值.解:∵-α-(-α)=,∴-α=+(-α).∴sin(-α)=sin[+(-α)]=cos(-α)=m.点评:(1)当两个角的和或差是的整数倍时,它们的三角函数值可通过诱导公式联系起来.(2)化简已知与所求,然后探求联系,这是解决问题的重要思想方法.例2已知sinα是方程5x2-7x-6=0的根,且α为第三象限角,求的值.第201页\n活动:教师引导学生先确定sinα的值再化简待求式,从而架起已知与未知的桥梁.解:∵5x2-7x-6=0的两根x=2或x=,∵-1≤x≤1,∴sinα=.又∵α为第三象限角,∴cosα==.∴tanα=.∴原式==tana=点评:综合运用相关知识解决综合问题.变式训练若函数f(n)=sin(n∈Z),则f(1)+f(2)+f(3)+…+f(102)=____________________.解:∵=sin(+2π)=sin,∴f(n)=f(n+12).从而有f(1)+f(2)+f(3)+…+f(12)=0,∴f(1)+f(2)+f(3)+…+f(102)=f(1)+f(2)+f(3)+f(4)+f(5)+(6)=2[f(1)+f(2)+f(3)]=2+.例3已知函数f(x)=asin(πx+α)+bcos(πx+β).其中a,b,α,β都是非零实数,又知f(2003)=-1,求f(2004)的值.活动:寻求f(2003)=-1与f(2004)之间的联系,这个联系就是我们解答问题的关键和要害.解:f(2003)=asin(2003π+α)+bcos(2003π+β)=asin(2002π+π+α)+bcos(2002π+π+β)=asin(π+α)+bcos(π+β)=-asinα-bcosβ=-(asinα+bcosβ),∵f(2003)=-1,∴asinα+bcosβ=1.∴f(2004)=asin(2004π+α)+bcos(2004π+β)=asinα+bcosβ=1.点评:解决问题的实质就是由未知向已知转化的过程,在这个过程中一定要抓住关键和要害,注意“整体代入”这一思想的应用.解答本题的关键和要害就是求得式子asinα+bcosβ=1,它是联系已知和未知的纽带.知能训练课本练习4—7.4.ΑSinα第201页\nCosα5.(1)-tan;(2)-tan79°39′;(3)-tan;(4)-tan35°28′.6.(1)(2);(3)-0.2116;(4)-0.7587(5);(6)-0.6475.7.(1)sin2α;(2)cos2α+课堂小结本节课同学们自己导出了公式五、公式六,完成了教材中诱导公式的学习任务,为求任意角的三角函数值“铺平了道路”.公式一至六可用一句话“纵变横不变,符号看象限”来记忆,简单方便,不会遗忘.利用这些公式,可把任意角的三角函数转化为锐角三角函数,为求值带来很大的方便,这种转化的思想方法,是我们经常用到的一种策略,要细心去体会、去把握.利用这些公式,还可以化简三角函数式,证明简单的三角恒等式,我们要多练习,在应用中达到熟练掌握的程度.作业1.课本习题1.3B组2.2.求值:sin21°+sin22°+sin23°+…+sin288°+sin289°.答案:44.5.设计感想1.本节设计指导思想是:在教师引导下放手让学生自主探究.因为公式多,学生容易记混,所以在学生的主动探究中明了公式的来龙去脉,在应用公式解决问题中灵活熟练掌握公式.通过学生的自主探究、推导公式,培养学生独立思考、知难而上的科学态度,更进一步地体会数学的奇特美、对称美.激发学生强烈的探究欲望,培养学生会学习的良好品质.2.用口诀记忆公式:①π±α,-α,2kπ+α的三角函数公式为:“函数名不变,符号看象限.”②±α,±α的三角函数公式为:“函数名改变,符号看象限.”其中α看成锐角.3.用类比的方法学习本节课的基础知识,用化归的数学思想指导三角函数的求值、化简与证明.第201页\n1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象整体设计教学分析研究函数的性质常常以图象直观为基础,这点学生已经有些经验,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想的应用.正弦函数、余弦函数的教学也是如此.先研究它们的图象,在此基础上再利用图象来研究它们的性质.显然,加强数形结合是深入研究函数性质的基本要求.由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此,教科书把对周期性的研究放在了首位.另外,教科书通过“旁白”,指出研究三角函数性质“就是要研究这类函数具有的共同特点”,这是对数学思考方向的一种引导.由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.三维目标1.通过实验演示,让学生经历图象画法的过程及方法,通过对图象的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力.2.通过本节学习,理解正弦函数、余弦函数图象的画法.借助图象变换,了解函数之间的内在联系.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观.重点难点教学重点:正弦函数、余弦函数的图象.教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系.课时安排1课时教学过程导入新课思路1.(复习导入)遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们在必修1中学过的指数函数、对数函数的图象是什么?是如何画出它们图象的(列表描点法:列表、描点、连线)?进而引导学生通过取值,画出当x∈[0,2π]时,y=sinx的图象.思路2.(情境导入)请学生动手做一做章头图表示的“简谐运动”实验.教师指导学生将塑料瓶底部扎一个小孔做成一个漏斗,再挂在架子上,就做成了一个简易单摆.在漏斗下方放一块纸板,板的中间画一条直线作为坐标系的横轴.把漏斗灌上沙并拉离平衡位置,放手使它摆动,同时匀速拉动纸板,这样就可在纸板上得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.它表示了漏斗对平衡位置的位移s(纵坐标)随时间t(横坐标)变化的情况.有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象.推进新课新知探究提出问题第201页\n问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x∈[0,2π]的精确图象呢?问题②:如何得到y=sinx,x∈R时的图象?活动:教师先让学生阅读教材、思考讨论,对于程度较弱的学生,教师指导他们查阅课本上的正弦线.此处的难点在于为什么要用正弦线来作正弦函数的图象,怎样在x轴上标横坐标?为什么将单位圆分成12份?学生思考探索仍不得要领时,教师可进行适时的点拨.只要解决了y=sinx,x∈[0,2π]的图象,就很容易得到y=sinx,x∈R时的图象了.对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x轴上从0到2π这一段分成12等份.由于单位圆周长是2π,这样就解决了横坐标问题.过⊙O1上的各分点作x轴的垂线,就可以得到对应于0、、、、、…、2π等角的正弦线,这样就解决了纵坐标问题(相当于“列表”).第二步,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,这就得到了函数对(x,y)(相当于“描点”).第三步,再把这些正弦线的终点用平滑曲线连接起来,我们就得到函数y=sinx在[0,2π]上的一段光滑曲线(相当于“连线”).如图1所示(这一过程用课件演示,让学生仔细观察怎样平移和连线过程.然后让学生动手作图,形成对正弦函数图象的感知).这是本节的难点,教师要和学生共同探讨.图1对问题②,因为终边相同的角有相同的三角函数值,所以函数y=sinx在x∈[2kπ,2(k+1)π],k∈Z且k≠0上的图象与函数y=sinx在x∈[0,2π]上的图象的形状完全一致,只是位置不同.于是我们只要将函数y=sinx,x∈[0,2π]的图象向左、右平行移动(每次2π个单位长度),就可以得到正弦函数y=sinx,x∈R的图象.(这一过程用课件处理,让同学们仔细观察整个图的形成过程,感知周期性)图2讨论结果:①利用正弦线,通过等分单位圆及平移即可得到y=sinx,x∈[0,2π]的图象.②左、右平移,每次2π个长度单位即可.提出问题如何画出余弦函数y=cosx,x∈R的图象?你能从正弦函数与余弦函数的关系出发,利用正弦函数图象得到余弦函数图象吗?活动:如果再用余弦线作余弦函数的图象那太麻烦了,根据已学的知识,教师引导学生观察诱导公式,思考探究两个函数之间的关系,通过怎样的坐标变换可得到余弦函数图象?让学生从函数解析式之间的关系思考,进而学习通过图象变换画余弦函数图象的方法.让学生动手做一做,体会正弦函数图象与余弦函数图象的异同,感知两个函数的整体形状,为下一步学习正弦函数、余弦函数的性质打下基础.讨论结果:第201页\n把正弦函数y=sinx,x∈R的图象向左平移个单位长度即可得到余弦函数图象.如图3.图3正弦函数y=sinx,x∈R的图象和余弦函数y=cosx,x∈R的图象分别叫做正弦曲线和余弦曲线点.提出问题问题①:以上方法作图,虽然精确,但不太实用,自然我们想寻求快捷地画出正弦函数图象的方法.你认为哪些点是关键性的点?问题②:你能确定余弦函数图象的关键点,并作出它在[0,2π]上的图象吗?活动:对问题①,教师可引导学生从图象的整体入手观察正弦函数的图象,发现在[0,2π]上有五个点起关键作用,只要描出这五个点后,函数y=sinx在[0,2π]上的图象的形状就基本上确定了.这五点如下:(0,0),(,1),(π,0),(,-1),(2π,0).因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑的曲线将它们连接起来,就可快速得到函数的简图.这种近似的“五点(画图)法”是非常实用的,要求熟练掌握.对问题②,引导学生通过类比,很容易确定在[0,2π]上起关键作用的五个点,并指导学生通过描这五个点作出在[0,2π]上的图象.讨论结果:①略.②关键点也有五个,它们是:(0,1),(,0),(π,-1),(,0),(2π,1).应用示例思路1例1画出下列函数的简图(1)y=1+sinx,x∈[0,2π];(2)y=-cosx,x∈[0,2π].活动:本例的目的是让学生在教师的指导下会用“五点法”画图,并通过独立完成课后练习1领悟画正弦、余弦函数图象的要领,最终达到熟练掌握.从实际教学来看,“五点法”画图易学却难掌握,学生需练好扎实的基本功.可先让学生按“列表、描点、连线”三步来完成.对学生出现的种种失误,教师不要着急,在学生操作中指导一一纠正,这对以后学习大有好处.解:(1)按五个关键点列表:x0π2πsinx010-101+sinx12101描点并将它们用光滑的曲线连接起来(图4).图4(2)按五个关键点列表:x0π2π第201页\ncosx10-101-cosx-1010-1描点并将它们用光滑的曲线连接起来(图5).图5点评:“五点法”是画正弦函数、余弦函数简图的基本方法,本例是最简单的变化.本例的目的是让学生熟悉“五点法”.如果是多媒体教学,要突破课件教学的互动性,多留给学生一些动手操作的时间,或者增加图象纠错的环节,效果将会令人满意,切不可教师画图学生看.完成本例后,让学生阅读本例下面的“思考”,并回答如何通过图象变换得出要画的图象,让学生从另一个角度熟悉函数作图的方法.变式训练2007山东临沂一摸统考17(1)在给定的直角坐标系如图6中,作出函数f(x)=cos(2x+)在区间[0,π]上的图象.解:列表取点如下:x0ππ2πf(x)1001描点连线作出函数f(x)=cos(2x+)在区间[0,π]上的图象如图7所示.图6图7思路2例1画出函数y=|sinx|,x∈R的简图.活动:教师引导学生观察探究y=sinx的图象并思考|sinx|的意义,发现只要将其x轴下方的图象翻上去即可.进一步探究发现,只要画出y=|sinx|,x∈[0,π]的图象,然后左、右平移(每次π个单位)就可以得到y=|sinx|,x∈R的图象.让学生尝试寻找在[0,π]上哪些点起关键作用,易看出起关键作用的点有三个:(0,0),(,1),(π,0).然后列表、描点、连线,让学生自己独立操作完成,对其失误的地方再予以一一纠正.解:按三个关键点列表:x0πsinx010y=|sinx|010描点并将它们用光滑的曲线连接起来(图8).第201页\n图8点评:通过本例,让学生更深刻地理解正弦曲线及“五点法”画图的要义,并进一步从图象变换的角度认识函数之间的关系,也为下一步将要学习的周期打下伏笔.变式训练1.方程sinx=的根的个数为()A.7B.8C.9D.10解:这是一个超越方程,无法直接求解,可引导学生考虑数形结合的思想方法,将其转化为函数y=的图象与y=sinx的图象的交点个数问题,借助图形直观求解.解好本题的关键是正确地画出正弦函数的图象.如图9,从图中可看出,两个图象有7个交点.图9答案:A2.用五点法作函数y=2sin2x的图象时,首先应描出的五点横坐标可以是()A.0,,,2πB.0,,,,πC.0,π,2π,3π,4πD.0,,,,答案:B知能训练课本本节练习解答:1.可以用单位圆中的三角函数线作出它们的图象,也可以用“五点法”作出它们的图象,还可以用图形计算器或计算机直接作出它们的图象.两条曲线形状相同,位置不同,例如函数y=sinx,x∈[0,2π]的图象,可以通过将函数y=cosx,x∈[,]的图象向右平行移动个单位长度而得到(图10).图10点评:在同一个直角坐标系中画出两个函数图象,利于对它们进行对比,可以加强正弦函数与余弦函数的联系.通过多种方法画图,渗透数形结合思想,强化学生对数学概念本质的认识.2.两个函数的图象相同.点评:先用“五点法”画出余弦函数的图象,再通过对比函数解析式发现另一函数的图象的变化规律,最后变换余弦曲线得到另一函数的图象(图11).第201页\n图11课堂小结以提问的方式,先由学生反思学习内容并回答,教师再作补充完善.1.怎样利用“周而复始”的特点,把区间[0,2π]上的图象扩展到整个定义域的?2.如何利用图象变换从正弦曲线得到余弦曲线?这节课学习了正弦函数、余弦函数图象的画法.除了它们共同的代数描点法、几何描点法之外,余弦函数图象还可由平移交换法得到.“五点法”作图是比较方便、实用的方法,应熟练掌握.数形结合思想、运动变化观点都是学习本课内容的重要思想方法.作业1.课本习题1.4A组1.2.预习下一节:正弦函数、余弦函数的性质.设计感想1.本节课操作性强,学生活动量较大.新课从实验演示入手,形成图象的感知后,升级问题,探索正弦曲线准确的作法,形成理性认识.问题设置层层深入,引导学生发现问题,解决问题,并对方法进行归纳总结,体现了新课标“以学生为主体,教师为主导”的课堂教学理念.如用多媒体课件,则可生动地表现出函数图象的变化过程,更好地突破难点.2.本节课所画的图象较多,能迅速准确地画出函数图象对初学者来说是一个较高的要求,重在学生动手操作,不要怕学生出错.通过画图可以培养学生的动手能力、模仿能力.开始时要慢些,尤其是“五点法”,每个点都要能准确地找到,然后迅速画出图象.3.本小节设置的“探究”“思考”较多,还提供了“探究与发现”“信息技术应用”等拓展性栏目.教学时,应留给学生一定的时间思考、探究这些问题第201页\n.1.4.2正弦函数、余弦函数的性质整体设计教学分析对于函数性质的研究,在高一必修中已经研究了幂函数、指数函数、对数函数的图象与性质.因此作为高中最后一个基本初等函数的性质的研究,学生已经有些经验了.其中,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想方法的应用.由于三角函数是刻画周期变化现象的重要数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期区间上的性质,那么就完全清楚它在整个定义域内的性质.正弦、余弦函数性质的难点,在于对函数周期性的正确理解与运用,以下的奇偶性,无论是由图象观察,还是由诱导公式进行证明,都很容易.单调性只要求由图象观察,不要求证明,而正弦、余弦函数的最大值和最小值可以作为单调性的一个推论,只要注意引导学生利用周期进行正确归纳即可.三维目标1.通过创设情境,如单摆运动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念;能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用.2.通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物.重点难点教学重点:正弦、余弦、正切函数的主要性质(包括周期性、单调性、奇偶性、最值或值域);深入研究函数性质的思想方法.教学难点:正弦函数和余弦函数图象间的关系、图象变换,以及周期函数概念的理解,最小正周期的意义及简单的应用.课时安排2课时教学过程第1课时导入新课思路1.人的情绪、体力、智力都有周期性的变化现象,在日常生活和工作中,人们常常有这样的自我感觉,有的时候体力充沛,心情愉快,思维敏捷;有的时候却疲倦乏力,心灰意冷,反应迟钝;也有的时候思绪不稳,喜怒无常,烦躁不安,糊涂健忘,这些感觉呈周期性发生,贯穿人的一生,这就是人体节律.这种有规律性的重复,我们称之为周期性现象.请同学们举出生活中存在周期现象的例子,在学生热烈的争论中引入新课.思路2.取出一个钟表,实际操作,我们发现钟表上的时针、分针和秒针每经过一周就会重复,这是一种周期现象.我们这节课要研究的主要内容就是周期现象与周期函数.那么我们怎样从数学的角度研究周期现象呢?在图形上让学生观察正弦线“周而复始”的变化规律,在代数式上让学生思考诱导公式:sin(x+2kπ)=sinx又是怎样反映函数值的“周而复始”的变化规律的.要求学生用日常语言叙述这个公式,通过对图象、函数解析式的特点的描述,使学生建立在比较牢固的理解周期性的认知基础上,来理解“周而复始”变化的代数刻画,由此引出周期函数的概念.推进新课新知探究提出问题问题①正弦函数、余弦函数是周期函数吗?如果是,又是怎样周期性变化的?问题②阅读教材并思考:怎样从代数的角度定义周期函数?活动:第201页\n教师可先引导学生查阅思考上节学过的正弦函数图象,让学生观察正弦线的变化规律,有什么新的发现?再让学生描述这种规律是如何体现在正弦函数的图象上的,即描述正弦函数图象是如何体现“周而复始”的变化规律的.通过研究图象,学生很容易看出正弦函数、余弦函数是周期函数.怎样变化呢?从图1中也能看出是每隔2π就重复一次.对问题①,学生对正弦函数是周期函数是没有疑问的,至于怎样描述,学生一时很难回答.教师可引导学生思考讨论,正弦函数图象是怎样重复出现的?对于回答对的学生给予肯定,鼓励继续探究.对于找不到思路的学生给予提示,指导其正确的探究思路.图1问题②,从图象上能够看出,但关键是怎样对“周而复始”的变化规律作出代数描述,这对学生有一定的难度.在引入正式定义之前,可以引导学生先从不同角度进行描述.例如:对于函数f(x)自变量每增加或减少一个定值(这样的定值可以有很多个),函数值就重复出现,那么这个函数就叫做周期函数.教师也可以引导点拨学生从诱导公式进行描述.例如:sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,k∈Z.这表明,正弦函数、余弦函数在定义域内自变量每增加(k>0时)或减少(k<0时)一个定值2kπ,它的函数值就重复出现,所以正弦函数、余弦函数都是周期函数.还可以通过类比奇函数、偶函数、周期函数的研究方法来加深理解周期性概念.如果函数f(x)对于其定义域内的每一个值,都有:f(-x)=-f(x),那么f(x)叫做奇函数;f(-x)=f(x),那么f(x)叫做偶函数;f(x+T)=f(x),其中T是非零常数,那么f(x)叫做周期函数.从上述定义可以看到,函数的性质是对函数的一种整体考察结果,反映了同一类函数的共同特点,它们可以从代数角度得到统一刻画.这种共同特点还可以从函数的图象上得到反映.讨论结果:①正弦函数、余弦函数是周期函数,每隔2π就重复一次.②略.定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π.提出问题①怎样正确理解三角函数是周期函数的定义?并举例说明.②通过探求思考怎样求一些简单三角函数的周期?活动:对问题①,学生一时可能难于理解周期的代数刻画.教师在引导学生阅读、讨论、思考问题时可多举些具体例子,以使抽象概念具体化.如常数函数f(x)=c(c为常数,x∈R)是周期函数,所有非零实数T都是它的周期.同时应特别强调:(1)对周期函数与周期定义中的“当x取定义域内每一个值时”这句话,要特别注意“每一个值”的要求.如果只是对某些x有f(x+T)=f(x),那么T就不是f(x)的周期.例如,分别取x1=2kπ+(k∈Z),x2=,则由sin(2kπ++)≠sin(2kπ+),sin(+)≠sin,可知不是正弦函数的周期.又如sin(30°+120°)=sin30°,但不是对所有x都有f(x+120°)=f(x),所以120°不是f(x)的周期.(2)从上述定义还可以看到周期函数的周期不唯一,例如2π,4π,6π,8π,……都是它的周期,有无穷多个,即2kπ(k∈Z,k≠0)都是正弦函数的周期.这一点可以从周期函数的图象上得到反映,也可以从代数上给以证明:设T是函数f(x)的周期,那么对于任意的k∈Z第201页\n,k≠0,kT也是函数f(x)的周期.(3)对于周期函数来说,如果所有的周期中存在着一个最小的正数,就称它为最小正周期.但周期函数不一定存在最小正周期,例如,对于常数函数f(x)=c(c为常数,x∈R),所有非零实数T都是它的周期,由于T可以是任意不为零的常数,而正数集合中没有最小值,即最小正数是不存在的,所以常数函数没有最小正周期.(4)正弦函数中,正周期无穷多,2π是最小的一个,在我们学习的三角函数中,如果不加特别说明,教科书提到的周期,一般都是指最小正周期.对问题②,教师要指导学生紧扣定义,可先出一些简单的求周期的例子,如:若T是f(x)的周期,那么2T、3T、…呢?怎样求?实际上,由于T是f(x)的周期,那么2T、3T、…也是它的周期.因为f(x+2T)=f(x+T+T)=f(x+T)=f(x).这样学生就会明白,数学中的周期函数,其实就是在独立变量上加上一个确定的周期之后数值重复出现的函数.讨论结果:①略.②定义法、公式法和图象法.应用示例思路1例1求下列函数的周期:(1)y=3cosx,x∈R;(2)y=sin2x,x∈R;(3)y=2sin(-),x∈R.活动:教师引导学生紧扣定义,一切从定义出发来求.(1)因为3cos(x+2π)=3cosx,根据周期函数的定义可知,原函数的周期为2π.有的学生可能会提出π是不是呢?让学生自己试一试,加深对概念的理解.因为3cos(x+π)=-3cosx≠3cosx,所以π不是周期.(2)教师引导学生观察2x,可把2x看成一个新的变量u,那么cosu的最小正周期是2π,就是说,当u增加到u+2π时,函数cosu的值重复出现,而u+2π=2x+2π=2(x+π),所以当自变量x增加到x+π且必须增加到x+π时函数值重复出现.因为sin2(x+π)=sin(2x+2π),所以由周期函数的定义可知,原函数的周期为π.(3)因为2sin[(x+4π)-]=2sin[(-)+2π]=2sin(-).所以由周期函数的定义可知,原函数的周期为4π.解:(1)周期为2π;(2)周期为π;(3)周期为4π.点评:通过本例我们看到函数周期的变化仅与自变量的系数有关,关键是让学生认识到,f(x+T)=f(x)中,T是相对于自变量x而言的,让学生总结归纳一下这些函数的周期与解析式中哪些量有关.一般地,函数y=Asin(ωx+φ)(其中A、ω、φ为常数,A≠0,ω>0,x∈R)的周期为T=.可以按照如下的方法求它的周期:y=Asin(ωx+φ+2π)=Asin[ω(x+)+φ]=Asin(ωx+φ).于是有f(x+)=f(x),所以其周期为.例如,在第(3)小题,y=2sin(x-),x∈R中,ω=,所以其周期是4π.由上述解法可以看到,思考的基本依据还是y=sinx的周期为2π.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期.如例3中的第(3)小题:T==4π.这是求简单三角函数周期的最基本方法,即公式法.变式训练1.已知f(x)是周期为5的周期函数,且f(1)=2007,求f(11).解:因为5是函数f(x)在R上的周期,所以f(11)=f(6+5)第201页\n=f(6)=f(1+5)=f(1)=2007.2.已知奇函数f(x)是R上的函数,且f(1)=2,f(x+3)=f(x),求f(8).解:由题意知,3是函数f(x)的周期,且f(-x)=-f(x),所以f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2.思路2例1判断函数f(x)=2sin2x+|cosx|,x∈R的周期性.如果是周期函数,最小正周期是多少?活动:本例的难度较大,教师可引导学生从定义出发,结合诱导公式,寻求使f(x+T)=f(x)成立的T的值.学生可能会很容易找出4π,2π,这的确是原函数的周期,但是不是最小正周期呢?教师引导学生选其他几个值试试.如果学生很快求出,教师给予表扬鼓励;如果学生做不出,教师点拨学生的探究思路,主要让学生自己讨论解决.解:因为f(x+π)=2sin2(x+π)+|cos(x+π)|=2sin2x+|cosx|=f(x).所以原函数是周期函数,最小正周期是π.点评:本题能很容易判断是周期函数,但要求的是“最小正周期”,那就要多加小心了.虽然将4π,2π带入公式后也符合要求,但还必须进一步变形,即f(x)中的x以x+π代替后看看函数值变不变.为此需将π,等都代入试一试.实际上,在f(x)=2sin2x+|cosx|,x∈R中,学生应看到平方与绝对值的作用是一样的,与负号没有关系.因而π肯定是原函数的一个周期.变式训练1.求函数y=2sin(π-x)的周期.解:因为y=2sin(π-x)=-2sin(x-),所以周期T=6π.2.证明正弦、余弦函数的最小正周期是2π.证明:(反证法)先证正弦函数的最小正周期是2π.由于2π是它的一个周期,所以只需证明任意一个小于2π的正数都不是它的周期.假设T是正弦函数的周期,且00)的周期〕.并思考总结本节都用了哪些数学方法?(观察与归纳,特殊到一般,定义法,数形结合,辩证的观点)作业1.课本习题A组3,B组3.2.预习正弦函数、余弦函数的奇偶性.设计感想1.本节课的设计思想是:在学生的探究活动中突破正弦、余弦函数的周期性这个教学难点.因此一开始要让学生从图形、代数两方面深入探究,不要让开始的探究成为一种摆设.如果学生一开始没有很好的理解,那么,以后有些题就会很难做.通过探究让学生找出周期这个规律性的东西,并明确知识依附于问题而存在,方法为解决问题的需要而产生.将周期性概念的形成过程自然地贯彻到教学活动中去,由此把学生的思维推到更高的广度.2.本节设计的特点是从形到数、由特殊到一般、由易到难,这符合学生的认知规律.让学生在探究中积累知识,发展能力,对形成科学的探究未知世界的严谨作风有着良好的启导.但由于学生知识水平的限制,本节不能扩展太多,建议让学有余力的学生继续探讨函数的周期性的规律及一般三角函数的周期的求法.3.根据本节课的特点可考虑分层推进、照顾全体.对优等生,重在引导他们进行一题多解,多题合一,变式思考的训练,培养他们求同思维、求异思维能力,以及思维的灵活性、深刻性与创造性,鼓励他们独立思考,勇于探索,敢于创新,对正确的要予以肯定,对暴露出来的问题要及时引导、剖析纠正,使课堂学习成为再发现再创造的过程.(设计者:郑吉星)第2课时导入新课思路1.(类比导入)我们在研究一个函数的性质时,如幂函数、指数函数、对数函数的性质,往往通过它们的图象来研究.先让学生画出正弦函数、余弦函数的图象,从学生画图象、观察图象入手,由此展开正弦函数、余弦函数性质的探究.思路2.(直接导入)研究函数就是要讨论函数的一些性质,y=sinx,y=cosx是函数,我们当然也要探讨它们的一些性质.本节课,我们就来研究正弦函数、余弦函数最基本的几条性质.请同学们回想一下,一般来说,我们是从哪些方面去研究一个函数的性质的呢(定义域、值域、奇偶性、单调性、最值)?然后逐一进行探究.推进新课新知探究提出问题①回忆并画出正弦曲线和余弦曲线,观察它们的形状及在坐标系中的位置;②观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的定义域各是什么;③观察正弦曲线和余弦曲线,说出正弦函数、余弦函数的值域各是什么;由值域又能得到什么;第201页\n④观察正弦曲线和余弦曲线,函数值的变化有什么特点?⑤观察正弦曲线和余弦曲线,它们都有哪些对称?(1)(2)图2活动:先让学生充分思考、讨论后再回答.对回答正确的学生,教师可鼓励他们按自己的思路继续探究,对找不到思考方向的学生,教师可参与到他们中去,并适时的给予点拨、指导.在上一节中,要求学生不仅会画图,还要识图,这也是学生必须熟练掌握的基本功.因此,在研究正弦、余弦函数性质时,教师要引导学生充分挖掘正弦、余弦函数曲线或单位圆中的三角函数线,当然用多媒体课件来研究三角函数性质是最理想的,因为单位圆中的三角函数线更直观地表现了三角函数中的自变量与函数值之间的关系,是研究三角函数性质的好工具.用三角函数线研究三角函数的性质,体现了数形结合的思想方法,有利于我们从整体上把握有关性质.对问题①,学生不一定画准确,教师要求学生尽量画准确,能画出它们的变化趋势.对问题②,学生很容易看出正弦函数、余弦函数的定义域都是实数集R〔或(-∞,+∞)〕.对问题③,学生很容易观察出正弦曲线和余弦曲线上、下都有界,得出正弦函数、余弦函数的值域都是[-1,1].教师要引导学生从代数的角度思考并给出证明.∵正弦线、余弦线的长度小于或等于单位圆的半径的长度,∴|sinx|≤1,|cosx|≤1,即-1≤sinx≤1,-1≤cosx≤1.也就是说,正弦函数、余弦函数的值域都是[-1,1].对于正弦函数y=sinx(x∈R),(1)当且仅当x=+2kπ,k∈Z时,取得最大值1.(2)当且仅当x=-+2kπ,k∈Z时,取得最小值-1.对于余弦函数y=cosx(x∈R),(1)当且仅当x=2kπ,k∈Z时,取得最大值1.(2)当且仅当x=(2k+1)π,k∈Z时,取得最小值-1.对问题④,教师可引导、点拨学生先截取一段来看,选哪一段呢?如图3,通过学生充分讨论后确定,选图象上的[-,](如图4)这段.教师还要强调为什么选这段,而不选[0,2π]的道理,其他类似.图3第201页\n图4这个变化情况也可从下表中显示出来:x-…0……π…sinx-1↗0↗1↘0↘-1就是说,函数y=sinx,x∈[-,].当x∈[-,]时,曲线逐渐上升,是增函数,sinx的值由-1增大到1;当x∈[,]时,曲线逐渐下降,是减函数,sinx的值由1减小到-1.类似地,同样可得y=cosx,x∈[-π,π]的单调变化情况.教师要适时点拨、引导学生先如何恰当地选取余弦曲线的一段来研究,如图5,为什么选[-π,π],而不是选[0,2π].图5引导学生列出下表:x-π…-…0……πcosx-1↗0↗1↘0↘-1结合正弦函数、余弦函数的周期性可知:正弦函数在每一个闭区间[-+2kπ,+2kπ](k∈Z)上都是增函数,其值从-1增大到1;在每一个闭区间[+2kπ,+2kπ](k∈Z)上都是减函数,其值从1减小到-1.余弦函数在每一个闭区间[(2k-1)π,2kπ](k∈Z)上都是增函数,其值从-1增加到1;在每一个闭区间[2kπ,(2k+1)π](k∈Z)上都是减函数,其值从1减小到-1.对问题⑤,学生能直观地得出:正弦曲线关于原点O对称,余弦曲线关于y轴对称.在R上,y=sinx为奇函数,y=cosx为偶函数.教师要恰时恰点地引导,怎样用学过的知识方法给予证明?由诱导公式:∵sin(-x)=-sinx,cos(-x)=cosx,∴y=sinx为奇函数,y=cosx为偶函数.至此,一部分学生已经看出来了,在正弦曲线、余弦曲线上还有其他的对称点和对称轴,如正弦曲线还关于直线x=对称,余弦曲线还关于点(,0)对称,等等,这是由它的周期性而来的.教师可就此引导学生进一步探讨,为今后的学习打下伏笔.讨论结果:①略.第201页\n②定义域为R.③值域为[-1,1],最大值都是1,最小值都是-1.④单调性(略).⑤奇偶性(略).当我们仔细对比正弦函数、余弦函数性质后,会发现它们有很多共同之处.我们不妨把两个图象中的直角坐标系都去掉,会发现它们其实都是同样形状的曲线,所以它们的定义域相同,都为R,值域也相同,都是[-1,1],最大值都是1,最小值都是-1,只不过由于y轴放置的位置不同,使取得最大(或最小)值的时刻不同;它们的周期相同,最小正周期都是2π;它们的图象都是轴对称图形和中心对称图形,且都是以图象上函数值为零所对应的点为对称中心,以过最值点且垂直于x轴的直线为对称轴.但是由于y轴的位置不同,对称中心及对称轴与x轴交点的横坐标也不同.它们都不具备单调性,但都有单调区间,且都是增、减区间间隔出现,也是由于y轴的位置改变,使增减区间的位置有所不同,也使奇偶性发生了改变.应用示例思路1例1数有最大值、最小值吗?如果有,请写出取最大值、最小值时的自变量x的集合,并说出最大值、最小值分别是什么.(1)y=cosx+1,x∈R;(2)y=-3sin2x,x∈R.活动:通过这道例题直接巩固所学的正弦、余弦的性质.容易知道,这两个函数都有最大值、最小值.课堂上可放手让学生自己去探究,教师适时的指导、点拨、纠错,并体会对应取得最大(小)值的自变量为什么会有无穷多个.解:(1)使函数y=cosx+1,x∈R取得最大值的x的集合,就是使函数y=cosx,x∈R取得最大值的x的集合{x|x=2kπ,k∈Z};使函数y=cosx+1,x∈R取得最小值的x的集合,就是使函数y=cosx,x∈R取得最小值的x的集合{x|x=(2k+1)π,k∈Z}.函数y=cosx+1,x∈R的最大值是1+1=2,最小值是-1+1=0.(2)令Z=2x,使函数y=-3sinZ,Z∈R取得最大值的Z的集合是{Z|Z=-+2kπ,k∈Z},由2x=Z=-+2kπ,得x=-+kπ.因此使函数y=-3sin2x,x∈R取得最大值的x的集合是{x|x=-+kπ,k∈Z}.同理,使函数y=-3sin2x,x∈R取得最小值的x的集合是{x|x=+kπ,k∈Z}.函数y=-3sin2x,x∈R的最大值是3,最小值是-3.点评:以前我们求过最值,本例也是求最值,但对应的自变量x的值却不唯一,这从正弦函数的周期性容易得到解释.求解本例的基本依据是正弦函数、余弦函数的最大(小)值的性质,对于形如y=Asin(ωx+φ)+B的函数,一般通过变量代换(如设Z=ωx+φ化归为y=AsinZ+B的形式),然后进行求解.这种思想对于利用正弦函数、余弦函数的其他性质解决问题时也适用.例2函数的单调性,比较下列各组数的大小:(1)sin(-)与sin(-);(2)cos()与cos().活动:学生很容易回忆起利用指数函数、对数函数的图象与性质进行大小比较,充分利用学生的知识迁移,有利于学生能力的快速提高.本例的两组都是正弦或余弦,只需将角化为同一个单调区间内,然后根据单调性比较大小即可.课堂上教师要让学生自己独立地去操作,教师适时地点拨、纠错,对思考方法不对的学生给予帮助指导.解:(1)因为<<<0,正弦函数y=sinx在区间[,0]上是增函数,所以sin()>sin().第201页\n(2)cos()=cos=cos,cos()=cos=cos.因为0<<<π,且函数y=cosx,x∈[0,π]是减函数,所以cos>cos,即cos()0,cos<0,显然大小立判.例3函数y=sin(x+),x∈[-2π,2π]的单调递增区间.活动:可以利用正弦函数的单调性来求所给函数的单调区间.教师要引导学生的思考方向:把x+看成Z,这样问题就转化为求y=sinZ的单调区间问题,而这就简单多了.解:令Z=x+.函数y=sinZ的单调递增区间是[+2kπ,+2kπ].由-+2kπ≤x+≤+2kπ,得+4kπ≤x≤+4kπ,k∈Z.由x∈[-2π,2π]可知,-2π≤+4kπ且+4kπ≤2π,于是≤k≤,由于k∈Z,所以k=0,即≤x≤,而[,][-2π,2π],因此,函数y=sin(+),x∈[-2π,2π]的单调递增区间是[,].点评:本例的求解是转化与化归思想的运用,即利用正弦函数的单调性,将问题转化为一个关于x的不等式问题.然后通过解不等式得到所求的单调区间,要让学生熟悉并灵活运用这一数学思想方法,善于将复杂的问题简单化.思路2例1求下列函数的定义域:(1)y=;(2)y=.活动:学生思考操作,教师提醒学生充分利用函数图象,根据实际情况进行适当的指导点拨,纠正出现的一些错误或书写不规范等.解:(1)由1+sinx≠0,得sinx≠-1,即x≠+2kπ(k∈Z).∴原函数的定义域为{x|x≠+2kπ,k∈Z}.(2)由cosx≥0,得+2kπ≤x≤+2kπ(k∈Z).∴原函数的定义域为[+2kπ,+2kπ](k∈Z).点评:本例实际上是解三角不等式,可根据正弦曲线、余弦曲线直接写出结果.本例分作两步,第一步转化,第二步利用三角函数曲线写出解集.第201页\n例2在下列区间中,函数y=sin(x+)的单调增区间是()A.[,π]B.[0,]C.[-π,0]D.[,]活动:函数y=sin(x+)是一个复合函数,即y=sin[φ(x)],φ(x)=x+,欲求y=sin(x+)的单调增区间,因φ(x)=x+在实数集上恒递增,故应求使y随φ(x)递增而递增的区间.也可从转化与化归思想的角度考虑,即把x+看成一个整体,其道理是一样的.解:∵φ(x)=x+在实数集上恒递增,又y=sinx在[2kπ-,2kπ+](k∈Z)上是递增的,故令2kπ-≤x+≤2kπ+.∴2kπ-≤x≤2kπ+.∴y=sin(x+)的递增区间是[2kπ-,2kπ+].取k=-1、0、1分别得[,]、[,]、[,],对照选择肢,可知应选B.答案:B点评:像这类题型,上述解法属常规解法,而运用y=Asin(ωx+φ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,若本题运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.当然作为选择题还可利用特殊值、图象变换等手段更快地解出.解题规律:求复合函数单调区间的一般思路是:(1)求定义域;(2)确定复合过程,y=f(t),t=φ(x);(3)根据函数f(t)的单调性确定φ(x)的单调性;(4)写出满足φ(x)的单调性的含有x的式子,并求出x的范围;(5)得到x的范围,与其定义域求交集,即是原函数的单调区间.结论:对于复合函数的单调性,可以直接根据构成函数的单调性来判断.变式训练1.如果函数f(x)=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么()A.T=2,θ=B.T=1,θ=πC.T=2,θ=πD.T=1,θ=解:T==2,又当x=2时,sin(π·2+θ)=sin(2π+θ)=sinθ,要使上式取得最大值,可取θ=.答案:A2.求函数y=sin(-)的单调递减区间及单调递增区间.解:y=sin(-)=-sin(-).由2kπ-≤-≤2kπ+,可得3kπ≤x≤3kπ+(k∈Z),为单调减区间;由2kπ+≤-≤2kπ+,第201页\n可得3kπ+≤x≤3kπ+(k∈Z),为单调增区间.所以原函数的单调减区间为[3kπ,3kπ+](k∈Z);原函数的单调增区间为[3kπ+,3kπ+](k∈Z).知能训练课本本节练习解答:1.(1)(2kπ,(2k+1)π),k∈Z;(2)((2k-1)π,2kπ),k∈Z;(3)(-+2kπ,+2kπ),k∈Z;(4)(+2kπ,+2kπ),k∈Z.点评:只需根据正弦曲线、余弦曲线写出结果,不要求解三角不等式,要注意结果的规范及体会数形结合思想方法的灵活运用.2.(1)不成立.因为余弦函数的最大值是1,而cosx=>1.(2)成立.因为sin2x=0.5,即sinx=±,而正弦函数的值域是[-1,1],±∈[-1,1].点评:比较是学习的关键,反例能加深概念的深刻理解.通过本题准确理解正弦、余弦函数的最大值、最小值性质.3.(1)当x∈{x|x=+2kπ,k∈Z}时,函数取得最大值2;当x∈{x|x=+2kπ,k∈Z}时,函数取得最小值-2.(2)当x∈{x|x=6kπ+3π,k∈Z}时,函数取得最大值3;当x∈{x|x=6kπ,k∈Z}时,函数取得最小值1.点评:利用正弦、余弦函数的最大值、最小值性质,结合本节例题巩固正弦、余弦函数的性质,快速写出所给函数的最大值、最小值.4.B点评:利用数形结合思想认识函数的单调性.这是一道选择题,要求快速准确地选出正确答案.数形结合是实现这一目标的最佳方法.5.(1)sin250°>sin260°;(2)cos>cos;(3)cos515°>cos530°;(4)sin()>sin().点评:解决这类问题的关键是利用诱导公式将它们转化到同一单调区间上研究.6.[kπ+,kπ+],k∈Z.点评:关键是利用转化与化归的思想将问题转化为正弦函数的单调性问题,得到关于x的不等式,通过解不等式求得答案.课堂小结1.由学生回顾归纳并说出本节学习了哪些数学知识,学习了哪些数学思想方法.这节课我们研究了正弦函数、余弦函数的性质.重点是掌握正弦函数的性质,通过对两个函数从定义域、值域、最值、奇偶性、周期性、增减性、对称性等几方面的研究,更加深了我们对这两个函数的理解.同时也巩固了上节课所学的正弦函数,余弦函数的图象的画法.第201页\n2.进一步熟悉了数形结合的思想方法,转化与化归的思想方法,类比思想的方法及观察、归纳、特殊到一般的辩证统一的观点.作业判断下列函数的奇偶性:(1)f(x)=xsin(π+x);(2)f(x)=.解答:(1)函数的定义域为R,它关于原点对称.∵f(x)=xsin(π+x)=-xsinx,f(-x)=-(-x)sin(-x)=-xsinx=f(x),∴函数为偶函数.(2)函数应满足1-sinx≠0,∴函数的定义域为{x|x∈R且x≠2kπ+,k∈Z}.∵函数的定义域关于原点不对称,∴函数既不是奇函数也不是偶函数.设计感想1.本节是三角函数的重点内容,设计的容量较大,指导思想是让学生在课堂上充分探究、大量活动.作为函数的性质,从初中就开始学习,到高中学习了幂函数、指数、对数函数后有了较深的认识,这是高中所学的最后一个基本初等函数.但由于以前所学的函数不是周期函数,所以理解较为容易,而正弦函数、余弦函数除具有以前所学函数的共性外,又有其特殊性,共性中包含特性,特性又离不开共性,这种普通性与特殊性的关系通过教学应让学生有所领悟.2.在讲完正弦函数性质的基础上,应着重引导学生用类比的方法写出余弦函数的性质,以加深他们对两个函数的区别与联系的认识,并在解题中突出数形结合思想,在训练中降低变化技巧的难度,提高应用图象与性质解题的力度.较好地利用图象解决问题,这也是本节课主要强调的数学思想方法.3.学习三角函数性质后,引导学生对过去所学的知识重新认识,例如sin(α+2π)=sinα这个公式,以前我们只简单地把它看成一个诱导公式,现在我们认识到了,它表明正弦函数的周期性,以提升学生的思维层次.1.4.3正切函数的性质与图象整体设计教学分析本节课的背景是:这之前我们已经用了三节课的时间学习了正弦函数和余弦函数的性质.函数的研究具有其本身固有的特征和特有的研究方式.一般来说,对函数性质的研究总是先作图象,通过观察图象获得对函数性质的直观认识,然后再从代数的角度对性质作出严格表述.但对正切函数,教科书换了一个新的角度,采取了先根据已有的知识(如正切函数的定义、诱导公式、正切线等)研究性质,然后再根据性质研究正切函数的图象.这样处理,主要是为了给学生提供研究数学问题更多的视角,在性质的指导下可以更加有效地作图、研究图象,加强了理性思考的成分,并使数形结合的思想体现得更加全面.教师要在学生探究活动过程中引导学生体会这种解决问题的方法.通过多媒体教学,让学生通过对图象的动态观察,对知识点的理解更加直观、形象.以提高学生的学习兴趣,提高课题教学质量.从学生的实际情况为教学出发点,通过各种数学思想的渗透,合理运用各种教学课件,逐步培养学生养成学会通过对图象的观察来整理相应的知识点的能力,学会运用数学思想解决实际问题的能力.这样既加强了类比这一重要数学思想的培养,也有利于学生综合运用能力的提高,有利于学生把新旧知识前后联系,融会贯通,提高教学效果.由于学生已经有了研究正弦函数、余弦函数的图象与性质的经验,这种经验完全可以迁移到对正切函数性质的研究中,因此,我们可以通过“探究”提出,引导学生根据前面的经验研究正切函数的性质,让学生深刻领悟这种迁移与类比的学习方法.三维目标1.通过对正切函数的性质的研究,注重培养学生类比思想的养成,以及培养学生综合运用新旧知识的能力.第201页\n学会通过对图象的观察来整理相应的知识点,学会运用数学思想解决实际问题的能力.2.在学习了正弦函数、余弦函数的图象与性质的基础上,运用类比的方法,学习正切函数的图象与性质,从而培养学生的类比思维能力.3.通过正切函数图象的教学,培养学生欣赏(中心)对称美的能力,激发学生热爱科学、努力学好数学的信心.重点难点教学重点:正切函数的性质与图象的简单应用.教学难点:正切函数性质的深刻理解及其简单应用.课时安排1课时教学过程导入新课思路1.(直接导入)常见的三角函数还有正切函数,前面我们研究了正、余弦函数的图象和性质,你能否根据研究正弦函数、余弦函数的图象与性质的经验,以同样的方法研究正切函数的图象与性质?由此展开新课.思路2.先由图象开始,让学生先画正切线,然后类比正弦、余弦函数的几何作图法来画出正切函数的图象.这也是一种不错的选择,这是传统的导入法.推进新课新知探究提出问题①我们通过画正弦、余弦函数图象探究了正弦、余弦函数的性质.正切函数是我们高中要学习的最后一个基本初等函数.你能运用类比的方法先探究出正切函数的性质吗?都研究函数的哪几个方面的性质?②我们学习了正弦线、余弦线、正切线.你能画出四个象限的正切线吗?③我们知道作周期函数的图象一般是先作出长度为一个周期的区间上的图象,然后向左、右扩展,这样就可以得到它在整个定义域上的图象.那么我们先选哪一个区间来研究正切函数呢?为什么?④我们用“五点法”能简捷地画出正弦、余弦函数的简图,你能画出正切函数的简图吗?你能类比“五点法”也用几个字总结出作正切简图的方法吗?活动:问题①,教师先引导学生回忆:正弦、余弦函数的性质是从定义域、值域、奇偶性、单调性、周期性这几个方面来研究的,有了这些知识准备,然后点拨学生也从这几个方面来探究正切函数的性质.由于还没有作出正切函数图象,教师指导学生充分利用正切线的直观性.(1)周期性由诱导公式tan(x+π)=tanx,x∈R,x≠+kπ,k∈Z可知,正切函数是周期函数,周期是π.这里可通过多媒体课件演示,让学生观察由角的变化引起正切线的变化的周期性,直观理解正切函数的周期性,后面的正切函数图象作出以后,还可从图象上观察正切函数的这一周期性.(2)奇偶性由诱导公式tan(-x)=-tanx,x∈R,x≠+kπ,k∈Z可知,正切函数是奇函数,所以它的图象关于原点对称.教师可进一步引导学生通过图象还能发现对称点吗?与正余弦函数相对照,学生会发现正切函数也是中心对称函数,它的对称中心是(,0)k∈Z.(3)单调性通过多媒体课件演示,由正切线的变化规律可以得出,正切函数在(,)内是增函数,第201页\n又由正切函数的周期性可知,正切函数在开区间(+kπ,+kπ),k∈Z内都是增函数.(4)定义域根据正切函数的定义tanα=,显然,当角α的终边落在y轴上任意一点时,都有x=0,这时正切函数是没有意义的;又因为终边落在y轴上的所有角可表示为kπ+,k∈Z,所以正切函数的定义域是{α|α≠kπ+,k∈Z},而不是{α≠+2kπ,k∈Z},这个问题不少初学者很不理解,在解题时又很容易出错,教师应提醒学生注意这点,深刻明了其内涵本质.(5)值域由多媒体课件演示正切线的变化规律,从正切线知,当x大于且无限接近时,正切线AT向Oy轴的负方向无限延伸;当x小于且无限接近时,正切线AT向Oy轴的正方向无限延伸.因此,tanx在(,)内可以取任意实数,但没有最大值、最小值.因此,正切函数的值域是实数集R.问题②,教师引导学生作出正切线,并观察它的变化规律,如图1.图1问题③,正切函数图象选用哪个区间作为代表区间更加自然呢?教师引导学生在课堂上展开充分讨论,这也体现了“教师为主导,学生为主体”的新课改理念.有的学生可能选取了[0,π]作为正切函数的周期选取,这正是学生作图的真实性的体现.此时,教师应调整计划,把课件中先作出[-,]内的图象,改为先作出[0,π]内的图象,再进行图象的平移,得到整个定义域内函数的图象,让学生观察思考.最后由学生来判断究竟选用哪个区间段内的函数图象既简单又能完全体现正切函数的性质,让学生通过分析得到先作区间(-,)的图象为好.这时条件成熟,教师引导学生来作正切函数的图象,如图2.根据正切函数的周期性,把图2向左、右扩展,得到正切函数y=tanx,x∈R,且x≠+kπ(k∈Z)的图象,我们称正切曲线,如图3.图2图3第201页\n问题④,教师引导学生观察正切曲线,点拨学生讨论思考,只需确定哪些点或线就能画出函数y=tanx,x∈(,)的简图.学生可看出有三个点很关键:(,-1),(0,0),(,1),还有两条竖线.因此,画正切函数简图的方法就是:先描三点(,-1),(0,0),(,1),再画两条平行线x=,x=,然后连线.教师要让学生动手画一画,这对今后解题很有帮助.讨论结果:①略.②正切线是AT.③略.④能,“三点两线”法.提出问题①请同学们认真观察正切函数的图象特征,由数及形从正切函数的图象讨论它的性质.②设问:每个区间都是增函数,我们可以说正切函数在整个定义域内是增函数吗?请举一个例子.活动:问题①,从图中可以看出,正切曲线是被相互平行的直线x=+kπ,k∈Z所隔开的无穷多支曲线组成的.教师引导学生进一步思考,这点反应了它的哪一性质——定义域;并且函数图象在每个区间都无限靠近这些直线,我们可以将这些直线称之为正切函数的什么线——渐近线;从y轴方向看,上下无限延伸,得到它的哪一性质——值域为R;每隔π个单位,对应的函数值相等,得到它的哪一性质——周期π;在每个区间图象都是上升趋势,得到它的哪一性质——单调性,单调增区间是(+kπ,+kπ),k∈Z,没有减区间.它的图象是关于原点对称的,得到是哪一性质——奇函数.通过图象我们还能发现是中心对称,对称中心是(,0),k∈Z.问题②,正切函数在每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.如在区间(0,π)上就没有单调性.讨论结果:①略.②略.应用示例例1比较大小.(1)tan138°与tan143°;(2)tan()与tan().活动:利用三角函数的单调性比较两个同名三角函数值的大小,可以先利用诱导公式将已知角化为同一单调区间内的角,然后再比较大小.教师可放手让学生自己去探究完成,由学生类比正弦、余弦函数值的大小比较,学生不难解决,主要是训练学生巩固本节所学的基础知识,加强类比思想的运用.解:(1)∵y=tanx在90°-tan,第201页\n即tan()>tan().点评:不要求学生强记正切函数的性质,只要记住正切函数的图象或正切线即可.例2用图象求函数y=的定义域.活动:如图4,本例的目的是让学生熟悉运用正切曲线来解题.不足之处在于本例可以通过三角函数线来解决,教师在引导学生探究活动中,也应以两种方法提出解决方案,但要有侧重点,应体现函数图象应用的重要性.图4图5解:由tanx-≥0,得tanx≥,利用图4知,所求定义域为[kπ+,kπ+)(k∈Z).点评:先在一个周期内得出x的取值范围,然后再加周期即可,亦可利用单位圆求解,如图5.本节的重点是正切线,但在今后解题时,学生哪种熟练就用哪种.变式训练根据正切函数的图象,写出使下列不等式成立的x的集合.(1)1+tanx≥0;(2)tanx+3<0.解:(1)tanx≥-1,∴x∈[kπ-,kπ+),k∈Z;(2)x∈[kπ-,kπ-),k∈Z.例3求函数y=tan(x+)的定义域、周期和单调区间.活动:类比正弦、余弦函数,本例应用的是换元法,由于在研究正弦、余弦函数的类似问题时已经用过换元法,所以这里也就不用再介绍换元法,可以直接将x+作为一个整体.教师可让学生自己类比地探究,只是提醒学生注意定义域.解:函数的自变量x应满足x+≠kπ+,k∈Z,即x≠2k+,k∈Z.所以函数的定义域是{x|x≠2k+,k∈Z}.由于f(x)=tan(x+)=tan(x++π)=tan[(x+2)+]=f(x+2),因此,函数的周期为2.由-+kπ0)的周期性的研究一样,这里可引导学生探究y=Atan(ωx+φ)(ω>0)的周期T=.变式训练求函数y=tan(x+)的定义域,值域,单调区间,周期性.解:由x+≠kπ+,k∈Z可知,定义域为{x|x∈R且x≠kπ+,k∈Z}.值域为R.由x+∈(kπ-,kπ+),k∈Z可得,在x∈(kπ-,kπ+)上是增函数.周期是π,也可看作由y=tanx的图象向左平移个单位得到,其周期仍然是π.例4把tan1,tan2,tan3,tan4按照由小到大的顺序排列,并说明理由.活动:引导学生利用函数y=tanx的单调性探究解题方法.也可利用单位圆中的正切线探究解题方法.但要提醒学生注意本节中活动的结论:正切函数在定义域内的每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.学生可能的错解有:错解1:∵函数y=tanx是增函数,又1<2<3<4,∴tan10时)或向右(当φ<0时)平行移动|φ|个单位长度而得到.问题④,教师指导学生独立或小组合作进行探究,教师作适当指导.注意提醒学生按照从具体到一般的思路得出结论,具体过程是:(1)以y=sin(x+)为参照,把y=sin(2x+)的图象与y=sin(x+)的图象作比较,取点A、B观察.发现规律:图2如图2,对于同一个y值,y=sin(2x+)的图象上点的横坐标总是等于y=sin(x+)的图象上对应点的倍.教学中应当非常认真地对待这个过程,展示多媒体课件,体现伸缩变换过程,引导学生在自己独立思考的基础上给出规律.(2)取ω=,让学生自己比较y=sin(x+)的图象与y=sin(x+)图象.教学中可以让学生通过作图、观察和比较图象、讨论等活动,得出结论:把y=sin(x+)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),就得到y=sin(x+)的图象.当取ω为其他值时,观察相应的函数图象与y=sin(x+)的图象的关系,得出类似的结论.这时ω对y=sin(ωx+φ)的图象的影响的铺垫已经完成,学生关于ω对y=sin(ωx+φ)的图象的影响的一般结论已有了大致轮廓.教师指导学生将上述结论一般化,归纳y=sin(ωx+φ)的图象与y=sin(x+φ)的图象之间的关系,得出结论:函数y=sin(ωx+φ)的图象可以看作是把y=sin(x+φ)的图象上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的倍(纵坐标不变)而得到.图3问题⑤,教师点拨学生,探索A对图象的影响的过程,与探索ω、φ对图象的影响完全一致,鼓励学生独立完成.学生观察y=3sin(2x+)的图象和y=sin(2x+)的图象之间的关系.如图3,分别在两条曲线上各取一个横坐标相同的点A、B,沿两条曲线同时移动这两点,并使它们的横坐标保持相同,观察它们纵坐标的关系.可以发现,对于同一个x值,函数y=3sin(2x+)的图象上的点的纵坐标等于函数y=sin(2x+)的图象上点的纵坐标的3倍.这说明,y=3sin(2x+)的图象,可以看作是把y=sin(2x+)的图象上所有的点的纵坐标伸长到原来的3倍(横坐标不变)而得到的.通过实验可以看到,A取其他值时也有类似的情况.有了前面两个参数的探究,学生得出一般结论:第201页\n函数y=Asin(ωx+φ)(其中A>0,ω>0)的图象,可以看作是把y=sin(ωx+φ)上所有点的纵坐标伸长(当A>1时)或缩短(当00,ω>0)的图象变化的影响情况.一般地,函数y=Asin(ωx+φ)(其中A>0,ω>0)的图象,可以看作用下面的方法得到:先画出函数y=sinx的图象;再把正弦曲线向左(右)平移|φ|个单位长度,得到函数y=sin(x+φ)的图象;然后使曲线上各点的横坐标变为原来的倍,得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的A倍,这时的曲线就是函数y=Asin(ωx+φ)的图象.⑥引导学生类比得出.其顺序是:先伸缩横坐标(或纵坐标),再伸缩纵坐标(或横坐标),最后平移.但学生很容易在第三步出错,可在图象变换时,对比变换,以引起学生注意,并体会一些细节.由此我们完成了参数φ、ω、A对函数图象影响的探究.教师适时地引导学生回顾思考整个探究过程中体现的思想:由简单到复杂,由特殊到一般的化归思想.讨论结果:①把从函数y=sinx的图象到函数y=Asin(ωx+φ)的图象的变换过程,分解为先分别考察参数φ、ω、A对函数图象的影响,然后整合为对y=Asin(ωx+φ)的整体考察.②略.③图象左右平移,φ影响的是图象与x轴交点的位置关系.④纵坐标不变,横坐标伸缩,ω影响了图象的形状.⑤横坐标不变,纵坐标伸缩,A影响了图象的形状.⑥可以.先伸缩后平移(提醒学生尽量先平移),但要注意第三步的平移.y=sinx的图象得y=Asinx的图象得y=Asin(ωx)的图象得y=Asin(ωx+φ)的图象.规律总结:先平移后伸缩的步骤程序如下:y=sinx的图象得y=sin(x+φ)的图象得y=sin(ωx+φ)的图象得y=Asin(ωx+φ)的图象.先伸缩后平移的步骤程序(见上).第201页\n应用示例例1画出函数y=2sin(x-)的简图.活动:本例训练学生的画图基本功及巩固本节所学知识方法.(1)引导学生从图象变换的角度来探究,这里的φ=,ω=,A=2,鼓励学生根据本节所学内容自己写出得到y=2sin(x-)的图象的过程:只需把y=sinx的曲线上所有点向右平行移动个单位长度,得到y=sin(x-)的图象;再把后者所有点的横坐标伸长到原来的3倍(纵坐标不变),得到y=sin(x-)的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)而得到函数y=2sin(x-)的图象,如图4所示.图4(2)学生完成以上变换后,为了进一步掌握图象的变换规律,教师可引导学生作换个顺序的图象变换,要让学生自己独立完成,仔细体会变化的实质.(3)学生完成以上两种变换后,就得到了两种画函数y=2sin(x-),简图的方法,教师再进一步的启发学生能否利用“五点法”作图画出函数y=2sin(x-)的简图,并鼓励学生动手按“五点法”作图的要求完成这一画图过程.解:方法一:画出函数y=2sin(x-)简图的方法为y=sinxy=sin(x-)y=sin(x-)y=2sin(x-).方法二:画出函数y=2sin(x-)简图的又一方法为y=sinxy=sinxy=2sinxy=2sin(x-)=2sin(x-).方法三:(利用“五点法”作图——作一个周期内的图象)第201页\n令X=x-,则x=3(X+).列表:X0π2πX2π5πY020-20描点画图,如图5所示.图5点评:学生独立完成以上探究后,对整个的图象变换及“五点法”作图会有一个新的认识.但教师要强调学生注意方法二中第三步的变换,左右平移变换只对“单个”x而言,这点是个难点,学生极易出错.对于“五点法”作图,要强调这五个点应该是使函数取最大值、最小值以及曲线与x轴相交的点.找出它们的方法是先作变量代换,设X=ωx+φ,再用方程思想由X取0,,π,,2π来确定对应的x值.变式训练1.2007山东威海一模统考,12要得到函数y=sin(2x+)的图象,只需将函数y=sinx的图象()A.向左平移个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变B.向右平移个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变D.向右平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变答案:C2.2007山东菏泽一模统考,7要得到函数y=2sin(3x)的图象,只需将函数y=2sin3x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位答案:D例2将y=sinx的图象怎样变换得到函数y=2sin(2x+)+1的图象?活动:可以用两种图象变换得到.但无论哪种变换都是针对字母x而言的.由y=sin2x的图象向左平移个单位长度得到的函数图象的解析式是y=sin2(x+)而不是y=sin(2x+),把y=sin(x+)的图象的横坐标缩小到原来的,得到的函数图象的解析式是y=sin(2x+),而不是y=sin2(x+).第201页\n解:方法一:①把y=sinx的图象沿x轴向左平移个单位长度,得y=sin(x+)的图象;②将所得图象的横坐标缩小到原来的,得y=sin(2x+)的图象;③将所得图象的纵坐标伸长到原来的2倍,得y=2sin(2x+)的图象;④最后把所得图象沿y轴向上平移1个单位长度得到y=2sin(2x+)+1的图象.方法二:①把y=sinx的图象的纵坐标伸长到原来的2倍,得y=2sinx的图象;②将所得图象的横坐标缩小到原来的,得y=2sin2x的图象;③将所得图象沿x轴向左平移个单位长度,得y=2sin2(x+)的图象;④最后把图象沿y轴向上平移1个单位长度得到y=2sin(2x+)+1的图象.点评:三角函数图象变换是个难点.本例很好地巩固了本节所学知识方法,关键是教师引导学生理清变换思路和各种变换对解析式的影响.变式训练1.将y=sin2x的图象怎样变换得到函数y=cos(2x-)的图象?解:y=sin2x=cos(-2x)=cos(2x-).在y=cos(2x-)中以x-a代x,有y=cos[2(x-a)-]=cos(2x-2a-).根据题意,有2x-2a-=2x-,得a=-.所以将y=sin2x的图象向左平移个单位长度可得到函数y=cos(2x-)的图象.2.如何由函数y=3sin(2x+)的图象得到函数y=sinx的图象?方法一:y=3sin(2x+)y=sin(2x+)y=sin(x+)y=sinx.方法二:y=3sin(2x+)=3sin2(x+)y=3sin2xy=sin2xy=sinx.3.2007山东高考,4要得到函数y=sinx的图象,只需将函数y=cos(x-)的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位答案:A知能训练第201页\n课本本节练习1、2.解答:1.如图6.点评:第(1)(2)(3)小题分别研究了参数A、ω、φ对函数图象的影响,第(4)小题则综合研究了这三个参数对y=Asin(ωx+φ)图象的影响.2.(1)C;(2)B;(3)C.点评:判定函数y=A1sin(ω1x+φ1)与y=A2sin(ω2x+φ2)的图象间的关系.为了降低难度,在A1与A2,ω1与ω2,φ1与φ2中,每题只有一对数值不同.课堂小结1.由学生自己回顾总结本节课探究的知识与方法,以及对三角函数图象及三角函数解析式的新的认识,使本节的总结成为学生凝练提高的平台.2.教师强调本节课借助于计算机讨论并画出y=Asin(ωx+)的图象,并分别观察参数φ、ω、A对函数图象变化的影响,同时通过具体函数的图象的变化,领会由简单到复杂、特殊到一般的化归思想.作业1.用图象变换的方法在同一坐标系内由y=sinx的图象画出函数y=sin(-2x)的图象.2.要得到函数y=cos(2x-)的图象,只需将函数y=sin2x的图象通过怎样的变换得到?3.指出函数y=cos2x+1与余弦曲线y=cosx的关系.解答:1.∵y=sin(-2x)=sin2x,作图过程:y=sinxy=sin2xy=sin2x.2.∵y=cos(2x-)=sin[+(2x-)]=sin(2x+)=sin2(x+),∴将曲线y=sin2x向左平移个单位长度即可.3.∵y=cos2x+1,∴将余弦曲线y=cosx上各点的横坐标缩短到原来的倍,再将所得曲线上所有的点向上平移1个单位长度,即可得到曲线y=cos2x+1.设计感想1.本节图象较多,学生活动量大,因此本节设计的主要指导思想是充分利用信息技术工具,从整体上探究参数φ、ω、A对函数y=Asin(ωx+φ)图象整体变化的影响.这符合新课标精神,符合教育课改新理念.现代教育要求学生在富有的学习动机下主动学习,合作探究,教师仅是学生主动学习的激发者和引导者.2.对于函数y=sinx的图象与函数y=Asin(ωx+φ)的图象间的变换,由于“平移变换”与“伸缩变换”在“顺序”上的差别,直接会对图象平移量产生影响,这点也是学习三角函数图象变换的难点所在,设计意图旨在通过对比让学生领悟它们的异同.第201页\n3.学习过程是一个认知过程,学生内部的认知因素和学习情景的因素是影响学生认知结构的变量.如果学生本身缺乏学习动机和原有的认知结构,外部的变量就不能发挥它们的作用,但外部变量所提供的刺激也能使内部能力引起学习.(设计者:张云全)第2课时导入新课思路1.(直接导入)上一节课中,我们分别探索了参数φ、ω、A对函数y=Asin(ωx+φ)的图象的影响及“五点法”作图.现在我们进一步熟悉掌握函数y=Asin(ωx+φ)(其中A>0,ω>0,φ≠0)的图象变换及其物理背景.由此展开新课.思路2.(复习导入)请同学们分别用图象变换及“五点作图法”画出函数y=4sin(x-)的简图,学生动手画图,教师适时的点拨、纠正,并让学生回答有关的问题.在学生回顾与复习上节所学内容的基础上展开新课.推进新课新知探究提出问题①在上节课的学习中,用“五点作图法”画函数y=Asin(ωx+φ)的图象时,列表中最关键的步骤是什么?②(1)把函数y=sin2x的图象向_____平移_____个单位长度得到函数y=sin(2x-)的图象;(2)把函数y=sin3x的图象向_______平移_______个单位长度得到函数y=sin(3x+)的图象;(3)如何由函数y=sinx的图象通过变换得到函数y=sin(2x+)的图象?③将函数y=f(x)的图象上各点的横坐标伸长到原来的2倍,再向左平移个单位长度,所得到的曲线是y=sinx的图象,试求函数y=f(x)的解析式.对这个问题的求解现给出以下三种解法,请说出甲、乙、丙各自解法的正误.(多媒体出示各自解法)甲生:所给问题即是将y=sinx的图象先向右平移个单位长度,得到y=sin(x-)的图象,再将所得的图象上所有点的横坐标缩短到原来的,得到y=sin(2x-),即y=cos2x的图象,∴f(x)=cos2x.乙生:设f(x)=Asin(ωx+φ),将它的图象上各点的横坐标伸长到原来的2倍,得到y=Asin(x+φ)的图象,再将所得的图象向左平移个单位长度,得到y=Asin(x++φ)=sinx,∴A=,=1,+φ=0,即A=,ω=2,φ=-.∴f(x)=sin(2x-)=cos2x.丙生:设f(x)=Asin(ωx+φ),将它的图象上各点的横坐标伸长到原来的2倍,得到y=Asin(x+φ)的图象,再将所得的图象向左平移个单位长度,得到y=Asin[(x+)+φ]=Asin(x++φ)=sinx,∴A=,=1,+φ=0.解得A=,ω=2,φ=-,第201页\n∴f(x)=sin(2x-)=cos2x.活动:问题①,复习巩固已学三种基本变换,同时为导入本节课重、难点创设情境.让学生回答并回忆A、ω、φ对函数y=Asin(ωx+φ)图象变化的影响.引导学生回顾“五点作图法”,既复习了旧知识,又为学生准确使用本节课的工具提供必要的保障.问题②,让学生通过实例综合以上两种变换,再次回顾比较两种方法平移量的区别和导致这一现象的根本原因,以此培养训练学生变换的逆向思维能力,训练学生对变换实质的理解及使用诱导公式的综合能力.问题③,甲生的解法是考虑以上变换的“逆变换”,即将以上变换倒过来,由y=sinx变换到y=f(x),解答正确.乙、丙两名同学都是采用代换法,即设y=Asin(ωx+φ),然后按题设中的变换得到两次变换后图象的函数解析式,这种思路清晰,但值得注意的是:乙生的解答过程中存在实质性的错误,就是将y=Asin(x+φ)的图象向左平移个单位长度时,把y=Asin(x+φ)函数中的自变量x变成x+,应该变换成y=Asin[(x+)+φ],而不是变换成y=Asin(x++φ),虽然结果一样,但这是巧合,丙同学的解答是正确的.三角函数图象的“逆变换”一定要注意其顺序,比如甲生解题的过程中如果交换了顺序就会出错,故在对这种方法不是很熟练的情况下,用丙同学的解法较合适(即待定系数法).平移变换是对自变量x而言的,比如乙同学的变换就出现了这种错误.讨论结果:①将ωx+φ看作一个整体,令其分别为0,,π,,2π.②(1)右,;(2)左,;(3)先y=sinx的图象左移,再把所有点的横坐标压缩到原来的倍(纵坐标不变).③略.提出问题①回忆物理中简谐运动的相关内容,并阅读本章开头的简谐运动的图象,你能说出简谐运动的函数关系吗?②回忆物理中简谐运动的相关内容,回答:振幅、周期、频率、相位、初相等概念与A、ω、φ有何关系.活动:教师引导学生阅读并适时点拨.通过让学生回忆探究,建立与物理知识的联系,了解常数A、ω、φ与简谐运动的某些物理量的关系,得出本章开头提到的“简谐运动的图象”所对应的函数解析式有如下形式:y=Asin(ωx+φ),x∈[0,+∞),其中A>0,ω>0.物理中,描述简谐运动的物理量,如振幅、周期和频率等都与这个解析式中的常数有关:A就是这个简谐运动的振幅,它是做简谐运动的物体离开平衡位置的最大距离;这个简谐运动的周期是T=,这是做简谐运动的物体往复运动一次所需要的时间;这个简谐运动的频率由公式f==给出,它是做简谐运动的物体在单位时间内往复运动的次数;ωx+φ称为相位;x=0时的相位φ称为初相.讨论结果:①y=Asin(ωx+φ),x∈[0,+∞),其中A>0,ω>0.②略.应用示例例1图7是某简谐运动的图象.试根据图象回答下列问题:(1)这个简谐运动的振幅、周期和频率各是多少?(2)从O点算起,到曲线上的哪一点,表示完成了一次往复运动?如从A点算起呢?(3)写出这个简谐运动的函数表达式.第201页\n图7活动:本例是根据简谐运动的图象求解析式.教师可引导学生再次回忆物理学中学过的相关知识,并提醒学生注意本课开始时探讨的知识,思考y=Asin(ωx+φ)中的参数φ、ω、A在图象上是怎样反映的,要解决这个问题,关键要抓住什么.关键是搞清φ、ω、A等参数在图象上是如何得到反映的.让学生明确解题思路,是由形到数地解决问题,学会数形结合地处理问题.完成解题后,教师引导学生进行反思学习过程,概括出研究函数y=Asin(ωx+φ)的图象的思想方法,找两名学生阐述思想方法,教师作点评、补充.解:(1)从图象上可以看到,这个简谐运动的振幅为2cm;周期为0.8s;频率为.(2)如果从O点算起,到曲线上的D点,表示完成了一次往复运动;如果从A点算起,则到曲线上的E点,表示完成了一次往复运动.(3)设这个简谐运动的函数表达式为y=Asin(ωx+φ),x∈[0,+∞),那么A=2;由=0.8,得ω=;由图象知初相φ=0.于是所求函数表达式是y=2sinx,x∈[0,+∞).点评:本例的实质是由函数图象求函数解析式,要抓住关键点.应用数学中重要的思想方法——数形结合的思想方法,应让学生熟练地掌握这种方法.变式训练函数y=6sin(x-)的振幅是,周期是____________,频率是____________,初相是___________,图象最高点的坐标是_______________.解:68π(8kπ+,6)(k∈Z)例2若函数y=Asin(ωx+φ)+B(其中A>0,ω>0)在其一个周期内的图象上有一个最高点(,3)和一个最低点(,-5),求这个函数的解析式.活动:让学生自主探究题目中给出的条件,本例中给出的实际上是一个图象,它的解析式为y=Asin(ωx+φ)+B(其中A>0,ω>0),这是学生未遇到过的.教师应引导学生思考它与y=Asin(ωx+φ)的图象的关系,它只是把y=Asin(ωx+φ)(其中A>0,ω>0)的图象向上(B>0)或向下(B<0)平移|B|个单位.由图象可知,取最大值与最小值时相应的x的值之差的绝对值只是半个周期.这里φ的确定学生会感到困难,因为题目中毕竟没有直接给出图象,不像例1那样能明显地看出来,应告诉学生一般都会在条件中注明|φ|<π,如不注明,就取离y轴最近的一个即可.解:由已知条件,知ymax=3,ymin=-5,则A=(ymax-ymin)=4,B=(ymax+ymin)=-1,=-=.∴T=π,得ω=2.故有y=4sin(2x+φ)-1.由于点(,3)在函数的图象上,故有3=4sin(2×+φ)-1,第201页\n即sin(+φ)=1.一般要求|φ|<,故取+φ=.∴φ=.故所求函数的解析式为y=4sin(2x+)-1.点拨:这是数形结合的又一典型应用,应让学生明了,题中无图但脑中应有图或根据题意画出草图,结合图象可直接求得A、ω,进而求得初相φ,但要注意初相φ的确定.求初相也是这节课的一个难点.变式训练已知函数y=Asin(ωx+φ)(其中A>0,ω>0)一个周期的图象如图8所示,求函数的解析式.解:根据“五点法”的作图规律,认清图象中的一些已知点属于五点法中的哪一点,而选择对应的方程ωxi+φ=0,,π,,2π(i=1,2,3,4,5),得出φ的值.方法一:由图知A=2,T=3π,由=3π,得ω=,∴y=2sin(x+φ).由“五点法”知,第一个零点为(,0),∴·+φ=0φ=-,故y=2sin(x-).方法二:得到y=2sin(x+φ)同方法一.由图象并结合“五点法”可知,(,0)为第一个零点,(,0)为第二个零点.∴·+φ=πφ=.∴y=2sin(x-).点评:要熟记判断“第一点”和“第二点”的方法,然后再利用ωx1+φ=0或ωx2+φ=π求出φ.2.2007海南高考,3函数y=sin(2x-)在区间[,π]上的简图是()第201页\n图9答案:A知能训练课本本节练习3、4.3.振幅为,周期为4π,频率为.先将正弦曲线上所有的点向右平行移动个单位长度,再在纵坐标保持不变的情况下将各点的横坐标伸长到原来的2倍,最后在横坐标保持不变的情况下将各点的纵坐标缩短到原来的倍.点评:了解简谐运动的物理量与函数解析式的关系,并认识函数y=Asin(ωx+φ)的图象与正弦曲线的关系.4..把正弦曲线在区间[,+∞)的部分向左平行移动个单位长度,就可得到函数y=sin(x+),x∈[0,+∞)的图象.点评:了解简谐运动的物理量与函数解析式的关系,并认识函数y=sin(x+φ)的图象与正弦曲线的关系.课堂小结1.由学生自己回顾本节学习的数学知识:简谐运动的有关概念.本节学习的数学方法:由简单到复杂、特殊到一般、具体到抽象的化归思想,数形结合思想,待定系数法,数学的应用价值.2.三角函数图象变换问题的常规题型是:已知函数和变换方法,求变换后的函数或图象,这种题目的解题的思路是:如果函数同名则按两种变换方法的步骤进行即可;如果函数不同名,则将异名函数化为同名函数,且需x的系数相同.左右平移时,如果x前面的系数不是1,需将x前面的系数提出,特别是给出图象确定解析式y=Asin(ωx+φ)的题型.有时从寻找“五点法”中的第一零点(,0)作为突破口,一定要从图象的升降情况找准第一零点的位置.作业把函数y=cos(3x+)的图象适当变动就可以得到y=sin(-3x)的图象,这种变动可以是()A.向右平移B.向左平移C.向右平移D.向左平移解:∵y=cos(3x+)=sin(-3x)=sin[-3(x-)],∴由y=sin[-3(x-)]向左平移才能得到y=sin(-3x)的图象.答案:D第201页\n点评:本题需逆推,教师在作业讲评时应注意加强学生逆向思维的训练.如本题中的-3x需写成-3(x-),这样才能确保平移变换的正确性.设计感想1.本节课符合新课改精神,突出体现了以学生能力的发展为主线,应用启发式、讲述式引导学生层层深入,培养学生自主探索及发现问题、分析问题和解决问题的能力.注重利用非智力因素促进学生的学习,实现数学知识价值、思维价值和人文价值的高度统一.2.由于本节内容综合性强,所以本节教案设计的指导思想是:在教师的引导下,让学生积极、主动地提出问题,自主分析,再合作交流,达到殊途同归.在思维训练的过程中,感受数学知识的魅力,成为学习的主人.新课改要求教师在新的教学理念下,要勇于,更要善于把问题抛给学生,激发学生探求知识的强烈欲望和创新意识.教学的目的是以知识为平台,全面提升学生的综合能力.第201页\n1.6三角函数模型的简单应用整体设计教学分析三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.三角函数模型的简单应用的设置目的,在于加强用三角函数模型刻画周期变化现象的学习.本节教材通过4个例题,循序渐进地从四个层次来介绍三角函数模型的应用,在素材的选择上注意了广泛性、真实性和新颖性,同时又关注到三角函数性质(特别是周期性)的应用.通过引导学生解决有一定综合性和思考水平的问题,培养他们综合应用数学和其他学科的知识解决问题的能力.培养学生的建模、分析问题、数形结合、抽象概括等能力.由于实际问题常常涉及一些复杂数据,因此要鼓励学生利用计算机或计算器处理数据,包括建立有关数据的散点图,根据散点图进行函数拟合等.三维目标1.能正确分析收集到的数据,选择恰当的三角函数模型刻画数据所蕴含的规律.将实际问题抽象为三角函数有关的简单函数模型.2.通过切身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用,及数学与日常生活和其他学科的联系.认识数学知识在生产、生活实际中所发挥的作用.体会和感受数学思想的内涵及数学本质,逐步提高创新意识和实践能力.3.通过函数拟合得到具体的函数模型,提高数学建模能力.并在探究中激发学生的学习兴趣,培养锲而不舍的钻研精神,培养学生勇于探索、勤于思考的科学精神.重点难点教学重点:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立三角函数模型,用三角函数模型解决一些具有周期变化规律的实际问题.教学难点:将某些实际问题抽象为三角函数的模型,并调动相关学科的知识来解决问题.课时安排2课时教学过程第1课时导入新课思路1.(问题导入)既然大到宇宙天体的运动,小到质点的运动以及现实世界中具有周期性变化的现象无处不在,那么究竟怎样用三角函数解决这些具有周期性变化的问题?它到底能发挥哪些作用呢?由此展开新课.思路2.我们已经学习了三角函数的概念、图象与性质,特别研究了三角函数的周期性.在现实生活中,如果某种变化着的现象具有周期性,那么是否可以借助三角函数来描述呢?回忆必修1第三章第二节“函数模型及其应用”,面临一个实际问题,应当如何选择恰当的函数模型来刻画它呢?以下通过几个具体例子,来研究这种三角函数模型的简单应用.推进新课新知探究提出问题①回忆从前所学,指数函数、对数函数以及幂函数的模型都是常用来描述现实世界中的哪些规律的?②数学模型是什么,建立数学模型的方法是什么?③上述的数学模型是怎样建立的?④怎样处理搜集到的数据?活动:师生互动,唤起回忆,充分复习前面学习过的建立数学模型的方法与过程.对课前已经做好复习的学生给予表扬,并鼓励他们类比以前所学知识方法,继续探究新的数学模型.对还没有进入状态的学生,教师要帮助回忆并快速激起相应的知识方法.在教师的引导下,学生能够较好地回忆起解决实际问题的基本过程是:收集数据→画散点图→选择函数模型→求解函数模型→检验→用函数模型解释实际问题.第201页\n这点很重要,学生只要有了这个认知基础,本节的简单应用便可迎刃而解.新课标下的教学要求,不是教师给学生解决问题或带领学生解决问题,而是教师引领学生逐步登高,在合作探究中自己解决问题,探求新知.讨论结果:①描述现实世界中不同增长规律的函数模型.②简单地说,数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的方法,是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法.③解决问题的一般程序是:1°审题:逐字逐句的阅读题意,审清楚题目条件、要求、理解数学关系;2°建模:分析题目变化趋势,选择适当函数模型;3°求解:对所建立的数学模型进行分析研究得到数学结论;4°还原:把数学结论还原为实际问题的解答.④画出散点图,分析它的变化趋势,确定合适的函数模型.应用示例例1如图1,某地一天从6—14时的温度变化曲线近似满足函数y=sin(ωx+φ)+b.图1(1)求这一天的最大温差;(2)写出这段曲线的函数解析式.活动:这道例题是2002年全国卷的一道高考题,探究时教师与学生一起讨论.本例是研究温度随时间呈周期性变化的问题.教师可引导学生思考,本例给出模型了吗?给出的模型函数是什么?要解决的问题是什么?怎样解决?然后完全放给学生自己讨论解决.题目给出了某个时间段的温度变化曲线这个模型.其中第(1)小题实际上就是求函数图象的解析式,然后再求函数的最值差.教师应引导学生观察思考:“求这一天的最大温差”实际指的是“求6是到14时这段时间的最大温差”,可根据前面所学的三角函数图象直接写出而不必再求解析式.让学生体会不同的函数模型在解决具体问题时的不同作用.第(2)小题只要用待定系数法求出解析式中的未知参数,即可确定其解析式.其中求ω是利用半周期(14-6),通过建立方程得解.解:(1)由图可知,这段时间的最大温差是20℃.(2)从图中可以看出,从6—14时的图象是函数y=Asin(ωx+φ)+b的半个周期的图象,∴A=(30-10)=10,b=(30+10)=20.∵·=14-6,∴ω=.将x=6,y=10代入上式,解得φ=.综上,所求解析式为y=10sin(x+)+20,x∈[6,14].点评:本例中所给出的一段图象实际上只取6—14即可,这恰好是半个周期,提醒学生注意抓关键.本例所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特别注意自变量的变化范围,这点往往被学生忽略掉.例22007全国高考函数y=|sinx|的一个单调增区间是()第201页\nA.(,)B.(,)C.(π,)D.(,2π)答案:C例3如图2,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度,φ为该地的纬度值,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.如果在北京地区(纬度数约为北纬40°)的一幢高为h0的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?活动:如图2本例所用地理知识、物理知识较多,综合性比较强,需调动相关学科的知识来帮助理解问题,这是本节的一个难点.在探讨时要让学生充分熟悉实际背景,理解各个量的含义以及它们之间的数量关系.首先由题意要知道太阳高度角的定义:设地球表面某地纬度值为φ,正午太阳高度角为θ,此时太阳直射纬度为δ,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.根据地理知识,能够被太阳直射到的地区为南、北回归线之间的地带,图形如图3,由画图易知太阳高度角θ、楼高h0与此时楼房在地面的投影长h之间有如下关系:h0=htanθ.由地理知识知,在北京地区,太阳直射北回归线时物体的影子最短,直射南回归线时物体的影子最长.因此,为了使新楼一层正午的太阳全年不被遮挡,应当考虑太阳直射南回归线时的情况.图3解:如图3,A、B、C分别为太阳直射北回归线、赤道、南回归线时楼顶在地面上的投影点.要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情况考虑,此时的太阳直射纬度-23°26′.依题意两楼的间距应不小于MC.根据太阳高度角的定义,有∠C=90°-|40°-(-23°26′)|=26°34′,所以MC==≈2.000h0,即在盖楼时,为使后楼不被前楼遮挡,要留出相当于楼高两倍的间距.点评:本例是研究楼高与楼在地面的投影长的关系问题,是将实际问题直接抽象为与三角函数有关的简单函数模型,然后根据所得的函数模型解决问题.要直接根据图2来建立函数模型,学生会有一定困难,而解决这一困难的关键是联系相关知识,画出图3,然后由图形建立函数模型,问题得以求解.这道题的结论有一定的实际应用价值.教学中,教师可以在这道题的基础上再提出一些问题,如下例的变式训练,激发学生进一步探究.变式训练某市的纬度是北纬23°,小王想在某住宅小区买房,该小区的楼高7层,每层3米,楼与楼之间相距15米.要使所买楼层在一年四季正午太阳不被前面的楼房遮挡,他应选择哪几层的房?第201页\n图4解:如图4,由例3知,北楼被南楼遮挡的高度为h=15tan[90°-(23°+23°26′)]=15tan43°34′≈14.26,由于每层楼高为3米,根据以上数据,所以他应选3层以上.知能训练课本本节练习1、2.解答:1.乙点的位置将移至它关于x轴的对称点处.点评:因为波从乙点传到戊点正好是一个周期,经过周期,波正好从乙点传到丁点,又因为在波的传播过程中,绳上各点只是上下震动,纵坐标在变,横坐标不变,所以经过周期,乙点位置将移至它关于x轴的对称点处,即横坐标不变,纵坐标与图中的丁点相同.2.如CCTV—1新闻联播节目播出的周期是1天.点评:了解实际生活中发生的周期变化现象.课堂小结1.本节课我们学习了三个层次的三角函数模型的应用,即根据图象建立解析式,根据解析式作出图象,将实际问题抽象为与三角函数有关的简单函数模型.你能概括出建立三角函数模型解决实际问题的基本步骤吗?2.实际问题的背景往往比较复杂,而且需要综合应用多学科的知识才能解决它.因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题.作业1.图5表示的是电流I与时间t的函数关系图5I=Asin(ωx+φ)(ω>0,|φ|<)在一个周期内的图象.(1)根据图象写出I=Asin(ωx+φ)的解析式;(2)为了使I=Asin(ωx+φ)中的t在任意一段s的时间内电流I能同时取得最大值和最小值,那么正整数ω的最小值为多少?解:(1)由图知A=300,第一个零点为(-,0),第二个零点为(,0),∴ω·(-)+φ=0,ω·+φ=π.解得ω=100π,φ=,∴I=300sin(100πt+).第201页\n(2)依题意有T≤,即≤,∴ω≥200π.故ωmin=629.2.搜集、归纳、分类现实生活中周期变化的情境模型.解:如以下两例:①人体内部的周期性节律变化和个人的习惯性的生理变化,如人体脉搏、呼吸、排泄、体温、睡眠节奏、饥饿程度等;②蜕皮(tuipi)昆虫纲和甲壳纲等节肢动物,以及线形动物等的体表具有坚硬的几丁质层,虽有保护身体的作用,但限制动物的生长、发育.因此,在胚后发育过程中,必须进行1次或数次脱去旧表皮,再长出宽大的新表皮后,才变成成虫,这种现象称为蜕皮;蜕下的“旧表皮”称为“蜕”,只有这样,虫体才能得以继续充分生长、发育.蜕皮现象的发生具有周期性,但蜕皮的准备和蜕皮过程是连续进行的.此外,脊椎动物爬行类的蜕皮现象尤为明显,如蜥蜴和蛇具有双层角质层,其外层在定期蜕皮时脱掉,蛇的外层角质层连同眼球外面透明的皮肤,约每2个月为一个周期可完整地脱落1次,称为蛇蜕.设计感想1.本教案设计指导思想是:充分唤起学生已有的知识方法,调动起相关学科的知识,尽量降低实例背景的相对难度,加大实际问题的鲜明、活跃程度,以引发学生探求问题的兴趣.2.应用三角函数模型解决问题,首先要把实际问题抽象为数学问题,确定它的周期,从而建立起适当三角函数模型.如果学生选择了不同的函数模型,教师应组织学生进行交流,或让学生根据自己选择的模型进行求解,然后再根据所求结果与实际情况差异进行评价.3.由于实际问题常常涉及一些复杂数据,因此要鼓励学生利用计算机或计算器处理数据,有条件的要用多媒体进行动态演示,以使学生有更多的时间用于对问题本质的理解.(设计者:郑吉星)第2课时导入新课思路1.通过展示上节作业引入,学生搜集、归纳到的现实生活中的周期现象有:物理情景的①简单和谐运动,②星体的环绕运动;地理情景的①气温变化规律,②月圆与月缺;心理、生理现象的①情绪的波动,②智力变化状况,③体力变化状况;日常生活现象的①涨潮与退潮,②股票变化等等.思路2.(复习导入)回忆上节课三角函数模型的简单应用例子,这节课我们继续探究三角函数模型在日常生活中的一些简单应用.推进新课新知探究提出问题①本章章头引言告诉我们,海水在月球和太阳引力作用下发生周期性涨落现象.回忆上节课的内容,怎样用上节课的方法从数学的角度来定量地解决这个问题呢?在指数、对数模型中是怎样处理搜集到的数据的?②请做下题(2007浙江高考)若函数f(x)=2sin(ωx+φ),x∈R(其中ω>0,|φ|<)的最小正周期是π,且f(0)=,则()A.ω=,φ=B.ω=,φ=C.ω=2,φ=D.ω=2,φ=活动:这样的开头对学生来说是感兴趣的.教师引导学生复习、回忆、理清思路,查看上节的课下作业.教师指导、适时设问,让学生尽快回忆到上节课的学习氛围中,使学生的思维状态进入到现在的情境中.讨论结果:①略②D应用示例例1货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,第201页\n晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:时刻0:003:006:009:0012:0015:0018:0021:0024:00水深/米5.07.55.02.55.07.55.02.55.0(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?活动:引导学生观察上述问题表格中的数据,会发现什么规律?比如重复出现的几个数据.并进一步引导学生作出散点图.让学生自己完成散点图,提醒学生注意仔细准确观察散点图,如图6.教师引导学生根据散点的位置排列,思考可以用怎样的函数模型来刻画其中的规律.根据散点图中的最高点、最低点和平衡点,学生很容易确定选择三角函数模型.港口的水深与时间的关系可以用形如y=Asin(ωx+φ)+h的函数来刻画.其中x是时间,y是水深,我们可以根据数据确定相应的A,ω,φ,h的值即可.这时注意引导学生与“五点法”相联系.要求学生独立操作完成,教师指导点拨,并纠正可能出现的错误,直至无误地求出解析式,进而根据所得的函数模型,求出整点时的水深.图6根据学生所求得的函数模型,指导学生利用计算器进行计算求解.注意引导学生正确理解题意,一天中有两个时间段可以进港.这时点拨学生思考:你所求出的进港时间是否符合时间情况?如果不符合,应怎样修改?让学生养成检验的良好习惯.在本例(3)中,应保持港口的水深不小于船的安全水深,那么如何刻画船的安全水深呢?引导学生思考,怎样把此问题翻译成函数模型.求货船停止卸货,将船驶向深水域的含义又是什么?教师引导学生将实际问题的意义转化为数学解释,同时提醒学生注意货船的安全水深、港口的水深同时在变,停止卸货的时间应当在安全水深接近于港口水深的时候.进一步引导学生思考:根据问题的实际意义,货船的安全水深正好等于港口的水深时停止卸货行吗?为什么?正确结论是什么?可让学生思考、讨论后再由教师组织学生进行评价.通过讨论或争论,最后得出一致结论:在货船的安全水深正好等于港口的水深时停止卸货将船驶向较深水域是不行的,因为这样不能保证货船有足够的时间发动螺旋桨.解:(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图(图6).根据图象,可以考虑用函数y=Asin(ωx+φ)+h刻画水深与时间之间的对应关系.从数据和图象可以得出:A=2.5,h=5,T=12,φ=0,由T==12,得ω=.所以这个港口的水深与时间的关系可用y=2.5sinx+5近似描述.由上述关系式易得港口在整点时水深的近似值:0:001:002:003:004:005:006:007:008:009:0010:00第201页\n时刻11:00水深5.0006.2507.1657.57.1656.2505.0003.7542.8352.5002.8353.754时刻12:0013:0014:0015:0016:0017:0018:0019:0020:0021:0022:0023:00水深5.0006.2507.1657.57.1656.2505.0003.7542.8352.5002.8353.754(2)货船需要的安全水深为4+1.5=5.5(米),所以当y≥5.5时就可以进港.令2.5sinx+5=5.5,sinx=0.2.由计算器可得MODEMODE2SHIFTsin-10.2=0.20135792≈0.2014.如图7,在区间[0,12]内,函数y=2.5sinx+5的图象与直线y=5.5有两个交点A、B,图7因此x≈0.2014,或π-x≈0.2014.解得xA≈0.3848,xB≈5.6152.由函数的周期性易得:xC≈12+0.3848=12.3848,xD≈12+5.6152=17.6152.因此,货船可以在0时30分左右进港,早晨5时30分左右出港;或在中午12时30分左右进港,下午17时30分左右出港.每次可以在港口停留5小时左右.图8(3)设在时刻x货船的安全水深为y,那么y=5.5-0.3(x-2)(x≥2).在同一坐标系内作出这两个函数的图象,可以看到在6—7时之间两个函数图象有一个交点(如图8).通过计算也可以得到这个结果.在6时的水深约为5米,此时货船的安全水深约为4.3米;6.5时的水深约为4.2米,此时货船的安全水深约为4.1米;7时的水深约为3.8米,而货船的安全水深约为4米.第201页\n因此为了安全,货船最好在6.5时之前停止卸货,将船驶向较深的水域.点评:本例是研究港口海水深度随时间呈周期性变化的问题,题目只给出了时间与水深的关系表,要想由此表直接得到函数模型是很困难的.对第(2)问的解答,教师引导学生利用计算器进行计算求解.同时需要强调,建立数学模型解决实际问题,所得的模型是近似的,并且得到的解也是近似的.这就需要根据实际背景对问题的解进行具体的分析.如本例中,一天中有两个时间段可以进港,教师应引导学生根据问题的实际意义,对答案的合理性作出解释.变式训练发电厂发出的电是三相交流电,它的三根导线上的电流强度分别是时间t的函数,IA=Isinωt,IB=Isin(ωt+120°),IC=Isin(ωt+240°),则IA+IB+IC=________.答案:0例2图9,是一个单摆的振动图象,据图象回答下列问题:(1)单摆振幅多大;(2)振动频率多高;(3)摆球速度首次具有最大负值的时刻和位置;(4)摆球运动的加速度首次具有最大负值的时刻和位置;(5)若当g=9.86m/s2J,求摆线长.活动:引导学生观察图象并思考,这个简谐运动的函数模型是什么?引导学生结合函数上例.点拨学生考虑最高点、最低点和平衡点.通过学生讨论、思考确定选用函数y=Asin(ωx+φ)来刻画单摆离开平衡位置的位移与时间之间的对应关系.图9解:结合函数模型和图象:(1)单摆振幅是1cm;(2)单摆的振动频率为1.25HZ;(3)单摆在0.6s通过平衡位置时,首次具有速度的最大负值;(4)单摆在0.4s时处正向最大位移处,首次具有加速度最大负值;(5)由单摆振动的周期公式T=2π,可得L==0.16m.点评:解决实际问题的关键是要归纳出数学函数模型,然后按数学模型处理.同时要注意检验,使所求得的结论符合问题的实际意义.变式训练1.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻的一个最高点和最低点之间的距离为.(1)求函数f(x)的解析式;(2)若sinx+f(x)=,求sinxcosx的值.解:(1)∵f(x)为偶函数,∴f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ).第201页\n∴φ=.∴f(x)=sin(ωx+)=cosωx.相邻两点P(x0,1),Q(x0+,-1).由题意,|PQ|==π2+4.解得ω=1.∴f(x)=cosx.(2)由sinx+f(x)=,得sinx+cosx=.两边平方,得sinxcosx=.2.小明在直角坐标系中,用1cm代表一个单位长度作出了一条正弦曲线的图象.若他将纵坐标改用2cm代表一个单位长度,横坐标不变,那么他所作的曲线的函数解析式是什么?若他将横坐标改用2cm代表一个单位长度,而纵坐标不变,那么他所作的曲线的函数解析式又是什么?解:小明原作的曲线为y=sinx,x∈R,由于纵坐标改用了2cm代表一个单位长度,与原来1cm代表一个单位长度比较,单位长度增加到原来的2倍,所以原来的1cm只能代表个单位长度了.由于横坐标没有改变,曲线形状没有变化,而原曲线图象的解析式变为y=sinx,x∈R.同理,若纵坐标保持不变,横坐标改用2cm代表一个单位,则横坐标被压缩到原来的,原曲线周期就由2π变为π.故改变横坐标后,原曲线图象的解析式变为y=sin2x,x∈R.3.求方程lgx=sinx实根的个数.解:由方程式模型构建图象模型.在同一坐标系内作出函数y=lgx和y=sinx的图象,如图10.可知原方程的解的个数为3.图10点评:单解方程是很困难的,而根据方程式模型构建图象模型,利用数形结合来解就容易多了,教师要让学生熟练掌握这一方法.知能训练课本本节练习33.本题可让学生上网查一下,下载有关人体节律的软件,利用软件就能方便地作出自己某一时间段的三条人体节律曲线,它们都是正弦型函数图象,根据曲线不难回答题中的问题.让学生在课下总结一下自己在什么时候应当控制情绪,在什么时候应当鼓励自己;在什么时候应当加以锻炼,在什么时候应当保持体力,以利于学生的高效率学习.点评:通过解决可用三角函数模型描述的自身问题,让学生增强学习三角函数的兴趣,并进一步体会三角函数是描述周期性变化现象的重要模型,体会数学应用的广泛性.课堂小结第201页\n1.让学生回顾本节课的数学模型都解决了哪些现实生活中的问题,用三角函数模型刻画周期变化规律对国家建设、制定未来计划,以及我们的学习、生活都发挥着什么样的作用.2.三角函数应用题通常涉及生产、生活、军事、天文、地理和物理等实际问题,其解答流程大致是:审读题意→设角建立三角式→进行三角变换→解决实际问题.在解决实际问题时,要学会具体问题具体分析,充分运用数形结合的思想,灵活的运用三角函数的图象和性质解决现实问题.作业图11如图11,一滑雪运动员自h=50m高处A点滑至O点,由于运动员的技巧(不计阻力),在O点保持速率v0不变,并以倾角θ起跳,落至B点,令OB=L,试问,当α=30°时,L的最大值为多少?当L取最大值时,θ为多大?分析:本题是一道综合性题目,主要考查考生运用数学知识来解决物理问题的能力.首先运用物理学知识得出目标函数,其次运用三角函数的有关知识来解决实际问题.解:由已知条件列出从O点飞出后的运动方程:由①②,整理得v0cosθ=,v0sinθ=+gt.∴v02+gLsinα=g2t2+≥2=gL.运动员从A点滑至O点,机械守恒有mgh=mv02,∴v02=2gh.∴L≤=200(m),即Lmax=200(m).又g2t2==,∴t=,s=Lcosα=v0tcosθ=2gh··cosθ,得cosθ=cosα.∴θ=α=30°.∴L最大值为200米,当L最大时,起跳倾角为30°.设计感想1.本节是三角函数内容中新增加的一节,目的是加强学生的应用意识,本节教案设计的指导思想,是让学生围绕着采集到的数据展开讨论,在学生思考探究的过程中,学会积极冷静地对待陌生背景,正确处理复杂数据以及准确分析问题中的数量关系,这很符合新课改理念.2.现实生活中的问题是多变的,学生的思维是发散的,观察的视角又是多样的,因此课题教学中,教师要善于挖掘并发现学生思维的闪光点,通过讨论例题这个载体,充分激发学生的潜能,让学生从观察走向发现,从发现走向创造,走向创新.第201页\n3.学生面对枯燥的数据,潜意识里是讨厌的,因此教师要在有限的课堂时间里,着重解决物理背景下、地理背景下的三角函数的函数模型的选定,不要把时间浪费在一些计算上.第201页\n第二章平面向量本章教材分析1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.4.本章教学约需12课时,具体分配如下,仅供参考.标题课时2.1平面向量的实际背景及基本概念1课时2.2向量的线性运算3课时2.3平面向量的基本定理及坐标表示2课时2.4平面向量的数量积2课时2.5平面向量的应用举例2课时本章复习2课时2.1平面向量的实际背景及基本概念整体设计教学分析本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.三维目标1.通过实例,利用平面向量的实际背景以及研究平面向量的必要性,第201页\n理解平面向量的概念以及确定平面向量的两个要素,搞清数量与向量的区别.2.理解自由向量、相等向量、相反向量、平行向量等概念,并能判断向量之间的关系,并会辨认图形中的相等向量或作出与某一已知向量相等的向量.3.在教学过程中,应充分根据平面向量的两个要素加以研究向量的关系,揭示向量可以平移这一特性.重点难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.课时安排1课时教学过程导入新课思路1.(情境导入)如图1,在同一时刻,老鼠由A向西北方向的C处逃窜,猫在B处向正东方向的D处追去,猫能否追到老鼠呢?学生马上得出结论:追不上,猫的速度再快也没用,因为方向错了.教师适时设问:如何从数学的角度来揭示这个问题的本质?由此展开新课.图1思路2.两列火车先后从同一站台沿相反方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?从中国象棋中规定“马”走日,象走“田”,让学生在图上画出马、象走过的路线引入也是一个不错的选择.推进新课新知探究提出问题①在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象这些具有共同特征的量呢?②新的概念是对这些具有共同特征的量的描述,应怎样定义这样的量呢?③数量与向量的区别在哪里?活动:教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.教师引导学生观察思考这些量的共同特征,我们能否在数学学科中对这些量加以抽象,形成一种新的量.至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.讨论结果:①略.②我们把既有大小,又有方向的量叫做向量.物理中称为矢量.③略.提出问题①如何表示向量?②有向线段和线段有何区别和联系?分别可以表示向量的什么?③长度为零的向量叫什么向量?长度为1的向量叫什么向量?④满足什么条件的两个向量是相等向量?单位向量是相等向量吗?⑤有一组向量,它们的方向相同或相反,这组向量有什么关系?怎样定义平行向量?第201页\n⑥如果把一组平行向量的起点全部移到一点O,它们是不是平行向量?这时各向量的终点之间有什么关系?⑦数量与向量有什么区别?⑧数学中的向量与物理中的力有什么区别?活动:教师指导学生阅读教材,通过阅读教材思考讨论以上问题.特别是有向线段,是学习向量的关键.但不能说“向量就是有向线段,有向线段就是向量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,在线段AB的两个端点中,规定一个顺序,假设A为起点、B为终点,我们就说线段AB具有方向,具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A为起点、B为终点的有向线段记作.起点要写在终点的前面.已知,线段AB的长度也叫做有向线段的长度,记作.有向线段包含三个要素:起点、方向、长度.图2知道了有向线段的起点、方向和长度,它的终点就唯一确定.用有向线段表示向量的方法是:1°起点是A,终点是B的有向线段,对应的向量记作:.这里要提醒学生注意的方向是由点A指向点B,点A是向量的起点.2°用字母a,b,c,…表示.(一定要学生规范书写:印刷用黑体a,书写用)3°向量(或a)的大小,就是向量(或a)的长度(或称模),记作||(或|a|).教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能比较大小,像a>b就没有意义,而|a|>|b|有意义.讨论结果:①向量也可用字母a,b,c,…表示(印刷用粗黑体表示),手写用a→来表示,或用表示向量的有向线段的起点和终点字母表示,如、.注意:手写体上面的箭头一定不能漏写.②有向线段:具有方向的线段就叫做有向线段,其有三个要素:起点、方向、长度.向量与有向线段的区别:向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.图3③长度为0的向量叫零向量,长度为1个单位长度的向量,叫单位向量.但要注意,第201页\n零向量、单位向量的定义都只是限制了大小.长度为0的向量叫做零向量,记作0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.④长度相等且方向相同的向量叫做相等向量.⑤是平行向量.平行向量定义的理解:第一,方向相同或相反的非零向量叫平行向量;第二,我们规定0与任一向量平行即0∥a.综合第一、第二才是平行向量的完整定义;向量a,b,c平行,记作a∥b∥c.如图3.图4又如图4,a,b,c是一组平行向量,任作一条与a所在直线0平行的直线l,在l上任取一点O,则可在l上分别作出=a,=b,=c.这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.说明:平行向量可以在同一直线上,要区别于两平行线的位置关系.⑥是共线向量,也就是平行向量.但要注意,平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).平行向量可以在同一直线上,要区别于两平行线的位置关系;共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.⑦数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性质,不能比较大小.⑧力有大小、方向、作用点三个要素,而数学中的向量是由物理中的力抽象出来的,只有大小与方向两个要素,与起点的位置无关.应用示例例1如图5,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A地至B、C两地的位移.(精确到1km)图5分析:本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示.解:表示A地至B地的位移,且||≈232km;(AB长度×8000000÷100000)表示A地至C地的位移,且||≈296km.(AC长度×8000000÷100000)点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图5,由A点确定B点、C点的位置.变式训练一个人从A点出发沿东北方向走了100m到达B点,然后改变方向,沿南偏东15°方向又走了100m到达C点,求此人从C点走回A点的位移.第201页\n图6解:根据题意画出示意图,如图6所示.||=100m,||=100m,∠ABC=45°+15°=60°,∴△ABC为正三角形.∴||=100m,即此人从C点返回A点所走的路程为100m.∵∠BAC=60°,∴∠CAD=∠BAC-∠BAD=15°,即此人行走的方向为西偏北15°.故此人从C点走回A点的位移为沿西偏北15°方向100m.图7例2判断下列命题是否正确,若不正确,请简述理由.(1)ABCD中,与是共线向量;(2)单位向量都相等.活动:教师引导学生画出平行四边形,如图7.因为AB//CD,所以∥.由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.解:(1)正确;(2)不正确.点评:本题考查基本概念,对于单位向量、平行向量的概念特征及相互关系必须把握好.图8例3如图8,设O是正六边形ABCDEF的中心,分别写出图中所示向量与相等的量.活动:本例是结合正六边形的一些几何性质,让学生巩固相等向量和平行向量的概念,正六边形是边长等于半径并且对边互相平行的正多边形,它既是轴对称图形,又是中心对称图形,具有丰富的几何性质.教科书中要求判断与,与是否相等,是要通过长度相等方向相反的两个向量的不等,让学生从反面认识向量相等的概念.解:==;==;===.点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,第201页\n还要方向相同.变式训练本例变式一:与向量长度相等的向量有多少个?(11个)本例变式二:是否存在与向量长度相等、方向相反的向量?(存在)例4下列命题正确的是()A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行活动:由于零向量与任一向量都共线,所以A不正确.由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确.对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,即只有C正确.答案:C点评:对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑.即要判断一个结论不正确,只需举一个反例即可.要启发学生注意这两方面的结合.变式训练1.判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗?(不一定)2.把一切单位平面向量归结到共同的始点,那么这些向量的终点所构成的图形是()A.一条线段B.一段圆弧C.两个点D.一个圆答案:D3.将平行于一直线的所有单位向量的起点平移到同一始点,则这些向量的终点所构成的图形是()A.一个点B.两个点C.一个圆D.一条线段答案:B知能训练课本本节练习.解答:1.通过具体的例子,让学生动手画两个方向不同、大小不等的力(向量),图略.2.||,||,这两个向量的长度相等,但它们不等.点评:向量是既有大小,又有方向的量.长度相等的两个向量未必是两个相等的量.3.||=2,||=2.5,||=3,||=2.点评:方格纸是学生学习几何、向量等内容的好工具.在方格纸中,长度和角度非常容易表现.建议在向量内容的学习中把方格纸作为重要的学具.第201页\n4.(1)它们的终点相同;(2)它们的终点不同.点评:方向相同的两个向量,如果它们的起点相同,它们的终点只与长度有关.课堂小结本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.作业课本习题2.11、2.设计感想本节是平面向量的第一节,显然属于“概念课”,概念的理解无疑是重点,但也是难点.本教案设计的指导思想是:把学生划分小组合作讨论学习,经过小组成员们的合作探究,对平面向量的基本概念和基本解题方法都明了了不少,应该有很多的成功之处或收获.对失败或教训之处可能是由于一些概念性问题没有深入研究,导致解题存在困难,不过这些会通过学习的深入弥补过来的.作为现代数学重要标志之一的向量引入中学数学以后,给中学数学带来了无限生机.通过本节具体问题的解决,让学生体会到数学在生活中的重要作用,并在实际课堂教学中规范学生的习惯,培养严谨的思考习惯和代数与几何相结合的习惯,为后面学习打下基础.第201页\n2.2平面向量的线性运算2.2.1向量加法运算及其几何意义整体设计教学分析向量的加法是学生在认识向量概念之后首先要掌握的运算,是向量的第二节内容.其主要内容是运用向量的定义和向量相等的定义得出向量加法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明,同时运用他们进行相关计算,这可让同学们进一步加强对向量几何意义的理解,同时也为接下来学习向量的减法奠定基础,起到承上启下的重要作用.学生已经通过上节的学习,掌握了向量的概念、几何表示,理解了什么是相等向量和共线向量.在学习物理的过程中,已经知道位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,这为本课题的引入提供了较好的条件.培养数学的应用意识是当今数学教育的主题,本节课的内容与实际问题联系紧密,更应强化数学来源于实际又应用于实际的意识.在向量加法的概念中,由于涉及到两个向量有不平行和平行这两种情况,因此有利于渗透分类讨论的数学思想,而在猜测向量加法的运算律时,通过引导学生利用实数加法的运算律进行类比.则能培养学生类比、迁移等能力.在实际教学中,类比数的运算,向量也能够进行运算.运算引入后,向量的工具作用才能得到充分发挥.实际上,引入一个新的量后,考察它的运算及运算律,是数学研究中的基本问题.教师应引导学生体会考察一个量的运算问题,最主要的是认清运算的定义及其运算律,这样才能正确、方便地实施运算.向量的加法运算是通过类比数的加法,以位移的合成、力的合力等两个物理模型为背景引入的.这样做使加法运算的学习建立在学生已有的认知基础上,同时还可以提醒学生注意,由于向量有方向,因此在进行向量运算时,不但要考虑大小问题,而且要考虑方向问题,从而使学生体会向量运算与数的运算的联系与区别.这样做,有利于学生更好地把握向量加法的特点.三维目标1.通过经历向量加法的探究,掌握向量加法概念,结合物理学实际理解向量加法的意义.能熟练地掌握向量加法的平行四边形法则和三角形法则,并能作出已知两向量的和向量.2.在应用活动中,理解向量加法满足交换律和结合律及表述两个运算律的几何意义.掌握有特殊位置关系的两个向量的和,比如共线向量、共起点向量、共终点向量等.3.通过本节内容的学习,让学生认识事物之间的相互转化,培养学生的数学应用意识,体会数学在生活中的作用.培养学生类比、迁移、分类、归纳等能力.重点难点教学重点:向量加法的运算及其几何意义.教学难点:对向量加法法则定义的理解.课时安排1课时教学过程导入新课思路1.(复习导入)上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断.另外,向量和我们熟悉的数一样也可以进行加减运算,这一节,我们先学习向量的加法.思路2.(问题导入)2004年大陆和台湾没有直航,因此春节探亲,要先从台北到香港,再从香港到上海,这两次位移之和是什么?怎样列出数学式子?一位同学按以下的命令进行活动:向北走20米,再向西走15米,再向东走5米,最后向南走10米,怎样计算他所在的位置?由此导入新课.推进新课新知探究提出问题①数能进行运算,向量是否也能进行运算呢?类比数的加法,猜想向量的加法,应怎样定义向量的加法?第201页\n②猜想向量加法的法则是什么?与数的运算法则有什么不同?图1活动:向量是既有大小、又有方向的量,教师引导学生回顾物理中位移的概念,位移可以合成,如图1.某对象从A点经B点到C点,两次位移、的结果,与A点直接到C点的位移结果相同.力也可以合成,老师引导,让学生共同探究如下的问题:图2(1)表示橡皮条在两个力的作用下,沿着GC的方向伸长了EO;图2(2)表示撤去F1和F2,用一个力F作用在橡皮条上,使橡皮条沿着相同的方向伸长相同的长度.图2改变力F1与F2的大小和方向,重复以上的实验,你能发现F与F1、F2之间的关系吗?力F对橡皮条产生的效果与力F1与F2共同作用产生的效果相同,物理学中把力F叫做F1与F2的合力.合力F与力F1、F2有怎样的关系呢?由图2(3)发现,力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.数的加法启发我们,从运算的角度看,F可以认为是F1与F2的和,即位移、力的合成看作向量的加法.讨论结果:①向量加法的定义:如图3,已知非零向量a、b,在平面内任取一点A,作=a,=b,则向量叫做a与b的和,记作a+b,即a+b=+=.图3求两个向量和的运算,叫做向量的加法.②向量加法的法则:1°向量加法的三角形法则在定义中所给出的求向量和的方法就是向量加法的三角形法则.运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量.0第201页\n位移的合成可以看作向量加法三角形法则的物理模型.2°向量加法的平行四边形法则图4如图4,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线就是a与b的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.力的合成可以看作向量加法的物理模型.提出问题①对于零向量与任一向量的加法,结果又是怎样的呢?②两共线向量求和时,用三角形法则较为合适.当在数轴上表示两个向量时,它们的加法与数的加法有什么关系?③思考|a+b|,|a|,|b|存在着怎样的关系?④数的运算和运算律紧密联系,运算律可以有效地简化运算.类似地,向量的加法是否也有运算律呢?活动:观察实际例子,教师启发学生思考,并适时点拨,诱导,探究向量的加法在特殊情况下的运算,共线向量加法与数的加法之间的关系.数的加法满足交换律与结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c).任意向量a,b的加法是否也满足交换律和结合律?引导学生画图进行探索.讨论结果:①对于零向量与任一向量,我们规定a+0=0+a=a.②两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段.③当a,b不共线时,|a+b|<|a|+|b|(即三角形两边之和大于第三边);当a,b共线且方向相同时,|a+b|=|a|+|b|;当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|).其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a|.一般地,我们有|a+b|≤|a|+|b|.④如图5,作=a,=b,以AB、AD为邻边作ABCD,则=b,=a.因为=+=a+b,=+=b+a,所以a+b=b+a.如图6,因为=+=(+)+=(a+b)+c,==+=+(+)=a+(b+c),所以(a+b)+c=a+(b+c).综上所述,向量的加法满足交换律和结合律.图5图6应用示例思路1例1如图7,已知向量a、b,求作向量a+b.活动:教师引导学生,让学生探究分别用向量加法的三角形法则和平行四边形法则作两个向量的和向量.第201页\n在向量加法的作图中,学生体会作法中在平面内任取一点O的依据——它体现了向量起点的任意性.在向量作图时,一般都需要进行向量的平移,用平行四边形法则作图时应强调向量的起点放在一起,而用三角形法则作图则要求首尾相连.图7图8图9解:作法一:在平面内任取一点O(如图8),作=a,=b,则=a+b.作法二:在平面内任取一点O(如图9),作=a,=b.以OA、OB为邻边作OACB,连接OC,则=a+b.变式训练化简:(1)+;(2)++;(3)++++.活动:根据向量加法的交换律使各向量首尾顺次相接,再运用向量加法的结合律调整运算顺序,然后相加.解:(1)+=+=.(2)++=++=(+)+=+=0.(3)++++FA=++++=+++=++=+=0.点评:要善于运用向量的加法的运算法则及运算律来求和向量.例2长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如图10所示,一艘船从长江南岸A点出发,以5km/h的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h.(1)试用向量表示江水速度、船速以及船实际航行的速度(保留两个有效数字);(2)求船实际航行的速度的大小与方向(用与江水速度间的夹角表示,精确到度).图10图11活动:本例结合一个实际问题说明向量加法在实际生活中的应用.这样的问题在物理中已有涉及,这里是要学生能把它抽象为向量的加法运算,体会其中应解决的问题是向量模的大小及向量的方向(与某一方向所成角的大小).引导点拨学生正确理解题意,将实际问题反映在向量作图上,从而与初中学过的解直角三角形建立联系.解:如图11所示,表示船速,表示水速,以AD、AB为邻边作ABCD,则表示船实际航行的速度.(2)在Rt△ABC中,||=2,||=5,第201页\n所以||=≈5.4.因为tan∠CAB=,由计算器得∠CAB=70°.答:船实际航行速度的大小约为5.4km/h,方向与水的流速间的夹角为70°.点评:用向量法解决物理问题的步骤为:先用向量表示物理量,再进行向量运算,最后回扣物理问题,解决问题.变式训练用向量方法证明对角线互相平分的四边形是平行四边形.图12活动:本题是一道平面几何题,如果用纯几何的方法去思考,问题不难解决,如果用向量法来解,不仅思路清晰,而且运算简单.将互相平分利用向量表达,以此为条件推证使四边形为平行四边形的向量等式成立.教师引导学生探究怎样用向量法解决几何问题,并在解完后总结思路方法.证明:如图12,设四边形ABCD的对角线AC、BD相交于点O,=+,=+.AC与BD互相平分,=,=,=,因此∥且||=||,即四边形ABCD是平行四边形.点评:证明一个四边形是平行四边形时,只需证明=或=即可.而要证明一个四边形是梯形,需证明与共线,且||≠||.思路2例3如图13,O为正六边形ABCDEF的中心,作出下列向量:(1)+;(2)+;(3)+.活动:教师引导学生由向量的平行四边形法则(三角形法则)作出相应的向量.教师一定要让学生亲自动手操作,对思路不清的学生教师适时地给予点拨指导.图13解:(1)因四边形OABC是以OA、OC为邻边的平行四边形,OB是其对角线,故+=.(2)因=,第201页\n故+与方向相同,长度为的长度的2倍,故+=.(3)因=,故+=+=0.点评:向量的运算结合平面几何知识,在长度和方向两个方面做文章.应深刻理解向量的加、减法的几何意义.例2在长江的某渡口处,江水以12.5km/h的速度向东流,渡船的速度是25km/h,渡船要垂直地渡过长江,其航向应如何确定?活动:如图14,渡船的实际速度、船速与水速应满足+=.图14解:设表示水流速度,表示渡船的速度,表示渡船实际垂直过江的速度,以AB为一边,AC为对角线作平行四边形,就是船的速度.在Rt△ACD中,∠ACD=90°,||=||=12.5,||=25,∠CAD=30°.答:渡船的航向为北偏西30°.点评:根据题意画出草图,是解决问题的关键.变式训练已知O是四边形ABCD内一点,若+++=0,则四边形ABCD是怎样的四边形?点O是四边形的什么点?活动:要判断四边形的形状就必须找出四边形边的某些关系,如平行、相等等;而要判断点O是该四边形的什么点,就必须找到该点与四边形的边或对角线的关系.图15解:如图15所示,设点O是任一四边形ABCD内的一点,且+++=0,过A作AEOD,连结ED,则四边形AEDO为平行四边形,设OE与AD的交点为M,过B作BFOC,则四边形BOCF为平行四边形,第201页\n设OF与BC的交点为N,于是M、N分别是AD、BC的中点.∵+++=0,+=+=,+=+=,∴+=0,即与的长度相等,方向相反.∴M、O、N三点共线,即点O在AD与BC的中点连线上.同理,点O也在AB与DC的中点连线上.∴点O是四边形ABCD对边中点连线的交点,且该四边形可以是任意四边形.知能训练课本本节练习.解答:1.直接在教科书上据原图作(此处从略).2.直接在教科书上据原图作(此处从略).3.(1);(2).点评:在向量的加法中要注意向量箭头的方向.4.(1)c;(2)f;(3)f;(4)g.点评:通过填空,使学生得出首尾相接的几个向量的求和规律.课堂小结1.先由学生回顾本节学习的数学知识:向量的加法定义,向量加法的三角形法则和平行四边形法则,向量加法满足交换律和结合律,几何作图,向量加法的实际应用.2.教师与学生一起总结本节学习的数学方法:特殊与一般,归纳与类比,数形结合,分类讨论,特别是通过知识迁移类比获得新知识的过程与方法.这种迁移类比的方法将把我们引向数学的王国,科学的殿堂.作业如图16所示,已知矩形ABCD中,||=4,设=a,=b,=c,试求向量a+b+c的模.图16解:过D作AC的平行线,交BC的延长线于E,∴DE∥AC,AD∥BE.∴四边形ADEC为平行四边形.∴=,=.于是a+b+c=++=+==+=2,∴|a+b+c|=2||=8.点评:求若干个向量的和的模(或最值)的问题通常按下列步骤进行:(1)寻找或构造平行四边形,找出所求向量的关系式;(2)用已知长度的向量表示待求向量的模,有时还要利用模的重要性质.设计感想第201页\n1.本节内容是向量的加法,运算法则有三角形法则和平行四边形法则,而两个法则的运用有各自的条件:三角形法则适合于首尾顺次相接的两向量相加,对于共线向量的加法仍然适合;而平行四边形法则适合于两个同起点的向量相加,对于共线向量却不能用此法解决.三角形法则可以推广到多个首尾顺次相接的向量的加法.2.本节要求使用多媒体辅助教学,便于直观、生动地揭示向量加法的概念,突破难点,提高效率,因为本节解决问题的方法主要是借助图形,采用数形结合的思想方法.多让学生动手画图,识图,让学生在动态中经历和体会概念的形成过程.让学生自己类比、猜想、发现及应用新知识解决问题.第201页\n2.2.2向量减法运算及其几何意义整体设计教学分析向量减法运算是加法的逆运算.学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算.因此,类比数的减法(减去一个数等于加上这个数的相反数),首先引进相反向量的概念,然后引入向量的减法(减去一个向量,等于加上这个向量的相反向量),通过向量减法的三角形法则和平行四边形法则,结合一定数量的例题,深刻理解向量的减法运算.通过阐述向量的减法运算,可以转化为向量加法运算,渗透化归的数学思想,使学生理解事物之间的相互转化、相互联系的辨证思想,同时由于向量的运算能反映出一些物理规律,从而加强了数学学科与物理学科之间的联系,提高学生的应用意识.三维目标1.通过探究活动,使学生掌握向量减法概念,理解两个向量的减法就是转化为加法来进行,掌握相反向量.2.启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题.能熟练地掌握用三角形法则和平行四边形法则作出两向量的差向量.重点难点教学重点:向量的减法运算及其几何意义.教学难点:对向量减法定义的理解.课时安排1课时教学过程导入新课思路1.(问题导入)上节课,我们定义了向量的加法概念,并给出了求作和向量的两种方法.由向量的加法运算自然联想到向量的减法运算:减去一个数等于加上这个数的相反数.向量的减法是否也有类似的法则呢?引导学生进一步探究,由此展开新课.思路2.(直接导入)数的减法运算是加法运算的逆运算.本节课,我们继续学习向量加法的逆运算——减法.引导学生去探究、发现.推进新课新知探究提出问题①向量是否有减法?②向量进行减法运算,必须先引进一个什么样的新概念?③如何理解向量的减法?④向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?活动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此定义数的减法运算,必须先引进一个相反数的概念.类似地,向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a和-a互为相反向量.于是-(-a)=a.我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a+(-a)=(-a)+a=0.所以,如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.(1)平行四边形法则第201页\n图1如图1,设向量=b,=a,则=-b,由向量减法的定义,知=a+(-b)=a-b.又b+=a,所以=a-b.由此,我们得到a-b的作图方法.图2(2)三角形法则如图2,已知a、b,在平面内任取一点O,作=a,=b,则=a-b,即a-b可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义.讨论结果:①向量也有减法运算.②定义向量减法运算之前,应先引进相反向量.与数x的相反数是-x类似,我们规定,与a长度相等,方向相反的量,叫做a的相反向量,记作-a.③向量减法的定义.我们定义a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量.规定:零向量的相反向量是零向量.④向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.提出问题①上图中,如果从a的终点到b的终点作向量,那么所得向量是什么?②改变上图中向量a、b的方向使a∥b,怎样作出a-b呢?讨论结果:①=b-a.②略.应用示例如图3(1),已知向量a、b、c、d,求作向量a-b,c-d.图3活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需要选点平移作出两个同起点的向量.第201页\n作法:如图3(2),在平面内任取一点O,作=a,=b,=c,=d.则=a-b,=c-d.变式训练(2006上海高考)在ABCD中,下列结论中错误的是()A.=B.AD+=C.-AD=BDD.AD+=0分析:A显然正确,由平行四边形法则可知B正确,C中,-=错误,D中,+=+=0正确.答案:C例2如图4,ABCD中,=a,=b,你能用a、b表示向量、吗?图4活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.解:由向量加法的平行四边形法则,我们知道=a+b,同样,由向量的减法,知=-=a-b.变式训练1.(2005高考模拟)已知一点O到ABCD的3个顶点A、B、C的向量分别是a、b、c,则向量等于()A.a+b+cB.a-b+cC.a+b-cD.a-b-c图5解析:如图5,点O到平行四边形的三个顶点A、B、C的向量分别是a、b、c,结合图形有=+=+=+-=a-b+c.答案:B2.若=a+b,=a-b.①当a、b满足什么条件时,a+b与a-b垂直?②当a、b满足什么条件时,|a+b|=|a-b|?③当a、b满足什么条件时,a+b平分a与b所夹的角?④a+b与a-b可能是相等向量吗?图6第201页\n解析:如图6,用向量构建平行四边形,其中向量、恰为平行四边形的对角线.由平行四边形法则,得=a+b,=-=a-b.由此问题就可转换为:①当边AB、AD满足什么条件时,对角线互相垂直?(|a|=|b|)②当边AB、AD满足什么条件时,对角线相等?(a、b互相垂直)③当边AB、AD满足什么条件时,对角线平分内角?(a、b相等)④a+b与a-b可能是相等向量吗?(不可能,因为对角线方向不同)点评:灵活的构想,独特巧妙,数形结合思想得到充分体现.由此我们可以想到在解决向量问题时,可以利用向量的几何意义构造几何图形,转化为平面几何问题,这就是数形结合解题的威力与魅力,教师引导学生注意领悟.例3判断题:(1)若非零向量a与b的方向相同或相反,则a+b的方向必与a、b之一的方向相同.(2)△ABC中,必有++=0.(3)若++=0,则A、B、C三点是一个三角形的三顶点.(4)|a+b|≥|a-b|.活动:根据向量的加、减法及其几何意义.解:(1)a与b方向相同,则a+b的方向与a和b方向都相同;若a与b方向相反,则有可能a与b互为相反向量,此时a+b=0的方向不确定,说与a、b之一方向相同不妥.(2)由向量加法法则+=,与CA是互为相反向量,所以有上述结论.(3)因为当A、B、C三点共线时也有++=0,而此时构不成三角形.(4)当a与b不共线时,|a+b|与|a-b|分别表示以a和b为邻边的平行四边形的两条对角线的长,其大小不定.当a、b为非零向量共线时,同向则有|a+b|>|a-b|,异向则有|a+b|<|a-b|;当a、b中有零向量时,|a+b|=|a-b|.综上所述,只有(2)正确.例4若||=8,||=5,则||的取值范围是()A.[3,8]B.(3,8)C.[3,13]D.(3,13)解析:=-.(1)当、同向时,||=8-5=3;(2)当、反向时,||=8+5=13;(3)当、不共线时,3<||<13.综上,可知3≤||≤13.答案:C第201页\n点评:此题可直接应用重要性质||a|-|b||≤|a+b|≤|a|+|b|求解.变式训练已知a、b、c是三个非零向量,且两两不共线,顺次将它们的终点和始点相连接而成一三角形的充要条件为a+b+c=0.证明:已知a≠0,b≠0,c≠0,且ab,bc,ca,(1)必要性:作=a,=b,则由假设=c,另一方面a+b=+=.由于与是一对相反向量,∴有+=0,故有a+b+c=0.(2)充分性:作=a,=b,则=a+b,又由条件a+b+c=0,∴+c=0.等式两边同加,得++c=+0.∴c=,故顺次将向量a、b、c的终点和始点相连接成一三角形.知能训练课本本节练习解答:1.直接在课本上据原图作(这里从略).2.,,,,.点评:解题中可以将减法变成加法运算,如-=+=,这样计算比较简便.3.图略.课堂小结1.先由学生回顾本节学习的数学知识:相反向量,向量减法的定义,向量减法的几何意义,向量差的作图.2.教师与学生一起总结本节学习的数学方法,类比,数形结合,几何作图,分类讨论.作业课本习题2.2A组6、7、8.设计感想1.向量減法的几何意义主要是结合平行四边形法则和三角形法则进行讲解的,两种作图方法各有千秋.第一种作法结合向量减法的定义,第二种作法结合向量的平行四边形法则,直接作出从同一点出发的两个向量a、b的差,即a-b可以表示为从向量b的终点指向向量a的终点的向量,第二种作图方法比较简捷.2.鉴于上述情况,教学中引导学生结合向量减法的几何意义,注意差向量的方向,也就是箭头的方向不要搞错了,a-b的箭头方向要指向a,如果指向b则表示b-a,在几何证明题目中,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.第201页\n2.2.3向量数乘运算及其几何意义整体设计教学分析向量的数乘运算,其实是加法运算的推广及简化,与加法、减法统称为向量的三大线性运算.教学时从加法入手,引入数乘运算,充分展现了数学知识之间的内在联系.实数与向量的乘积,仍然是一个向量,既有大小,也有方向.特别是方向与已知向量是共线向量,进而引出共线向量定理.共线向量定理是本章节中重要的内容,应用相当广泛,且容易出错.尤其是定理的前提条件:向量a是非零向量.共线向量定理的应用主要用于证明点共线或平行等几何性质,且与后续的知识有着紧密的联系.三维目标1.通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律.2.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.3.通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.重点难点教学重点:1.实数与向量积的意义.2.实数与向量积的运算律.3.两个向量共线的等价条件及其运用.教学难点:对向量共线的等价条件的理解运用.课时安排1课时教学过程导入新课思路1.前面两节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算基础上研究相同向量和的简便计算及推广.在代数运算中,a+a+a=3a,故实数乘法可以看成是相同实数加法的简便计算方法,那么相同向量的求和运算是否也有类似的简便计算.思路2.一物体做匀速直线运动,一秒钟的位移对应的向量为a,那么在同一方向上3秒钟的位移对应的向量怎样表示?是3a吗?怎样用图形表示?由此展开新课.推进新课新知探究提出问题①已知非零向量a,试一试作出a+a+a和(-a)+(-a)+(-a).②你能对你的探究结果作出解释,并说明它们的几何意义吗?③引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?怎样理解两向量平行?与两直线平行有什么异同?活动:引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a=0,而不是0·a=0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a,λ-a都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a=λa+μa和λ(a+b)=λa+λb,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.对问题①,学生通过作图1可发现,=++=a+a+a.类似数的乘法,可把a+a+a记作3a,即=3a.显然3a的方向与a的方向相同,3a的长度是a的长度的3倍,即|3a|=3|a|.同样,由图1可知,第201页\n图1==(-a)+(-a)+(-a),即(-a)+(-a)+(-a)=3(-a).显然3(-a)的方向与a的方向相反,3(-a)的长度是a的长度的3倍,这样,3(-a)=-3a.对问题②,上述过程推广后即为实数与向量的积.我们规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,它的长度与方向规定如下:(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反.由(1)可知,λ=0时,λa=0.根据实数与向量的积的定义,我们可以验证下面的运算律.实数与向量的积的运算律设λ、μ为实数,那么(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb.特别地,我们有(-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb.对问题③,向量共线的等价条件是:如果a(a≠0)与b共线,那么有且只有一个实数λ,使b=λa.推证过程教师可引导学生自己完成,推证过程如下:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由向量数乘的定义,知a与b共线.反过来,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b=μa;当a与b反方向时,有b=-μa.关于向量共线的条件,教师要点拨学生做进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.讨论结果:①数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ|·|a|确定.②它的几何意义是把向量a沿a的方向或a的反方向放大或缩小.③向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.应用示例思路1例1计算:(1)(-3)×4a;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).活动:本例是数乘运算的简单应用,可让学生自己完成,要求学生熟练运用向量数乘运算的运算律.教学中,点拨学生不能将本题看作字母的代数运算,可以让他们在代数运算的同时说出其几何意义,使学生明确向量数乘运算的特点.同时向学生点出,向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a、b,以及任意实数λ、μ1、μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.解:(1)原式=(-3×4)a=-12a;(2)原式=3a+3b-2a+2b-a=5b;第201页\n(3)原式=2a+3b-c-3a+2b-c=-a+5b-2c.点评:运用向量运算的运算律,解决向量的数乘.其运算过程可以仿照多项式运算中的“合并同类项”.变式训练若3m+2n=a,m-3n=b,其中a,b是已知向量,求m,n.解:因3m+2n=a,①m-3n=b.②3×②得3m-9n=3b.③①-③得11n=a-3b.∴n=a-b.④将④代入②,有m=b+3n=a+b.点评:此题可把已知条件看作向量m、n的方程,通过方程组的求解获得m、n.在此题求解过程中,利用了实数与向量的积以及它所满足的交换律、结合律,从而解向量的二元一次方程组的方法与解实数的二元一次方程组的方法一致.图2例2如图2,已知任意两个非零向量a、b,试作=a+b,=a+2b,=a+3b.你能判断A、B、C三点之间的位置关系吗?为什么?活动:本例给出了利用向量共线判断三点共线的方法,这是判断三点共线常用的方法.教学中可以先引导学生作图,通过观察图形得到A,B,C三点共线的猜想,再将平面几何中判断三点共线的方法转化为用向量共线证明三点共线.本题只要引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a、b变化过程中,A、B、C三点始终在同一条直线上的规律.图3解:如图3分别作向量、过点A、C作直线AC.观察发现,不论向量a、b怎样变化,点B始终在直线上,猜想A、B、C三点共线.事实上,因为=-=a+2b-(a+b)=b,而=-=a+3b-(a+b)=2b,于是=2.所以A、B、C三点共线.第201页\n点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的新颖独特.例3如图4,ABCD的两条对角线相交于点M,且=a,=b,你能用a、b表示和吗?图4活动:本例的解答要用到平行四边形的性质.另外,用向量表示几何元素(点、线段等)是用向量方法证明几何问题的重要步骤,教学中可以给学生明确指出这一点.解:在ABCD中,∵=+=a+b,=-=a-b,又∵平行四边形的两条对角线互相平分,∴==(a+b)=a-b,==(a-b)=a-b,==a+b,==-=-a+b.点评:结合向量加法和减法的平行四边形法则和三角形法则,将两个向量的和或差表示出来,这是解决这类几何题的关键.思路2例1凸四边形ABCD的边AD、BC的中点分别为E、F,求证:=(+).活动:教师引导学生探究,能否构造三角形,使EF作为三角形中位线,借助于三角形中位线定理解决,或创造相同起点,以建立向量间关系.鼓励学生多角度观察思考问题.图5解:方法一:过点C在平面内作=,则四边形ABGC是平行四边形,故F为AG中点.(如图5)∴EF是△ADG的中位线.∴EFDG.∴=.第201页\n而=+=+,∴=(+).方法二:如图6,连接EB、EC,则有=+,=+,图6又∵E是AD之中点,∴有+=0,即有+=+.以与为邻边作EBGC,则由F是BC之中点,可得F也是EG之中点.∴==(+)=(+).点评:向量的运算主要从以下几个方面加强练习:(1)加强数形结合思想的训练,画出草图帮助解决问题;(2)加强三角形法则和平行四边形法则的运用练习,做到准确熟练运用.例2已知和是不共线向量=t(t∈R),试用、表示.活动:教师引导学生思考,由=t(t∈R)知A、B、P三点共线,而=+,然后以表示,进而建立,的联系.本题可让学生自己解决,教师适时点拨.解:=+=+t·=+t·(-)=(1-t)·+t·.点评:灵活运用向量共线的条件.若令1-t=m,t=n,则=m·+n·,m+n=1.变式训练1.设两个不共线的向量e1、e2,若向量a=2e1-3e2,向量b=2e1+3e2,向量c=2e1-9e2,问是否存在这样的实数λ、μ,使向量d=λa+μb与向量c共线?解:d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(3μ-3λ)e2,要使d与c共线,则存在实数k使d=kc,即(2λ+2μ)e1+(3μ-3λ)e2=2ke1-9ke2.由2λ+2μ=2k及3μ-3λ=-9k得λ=-2μ.故存在这样的实数λ和μ,只要λ=-2μ就能使d与c共线.2.(2007浙江高考),7若非零向量a、b满足|a+b|=|b|,则()A.|2a|>|2a+b|B.|2a|<|2a+b|C.|2b|>|a+2b|D.|2b|<|a+2b|答案:C3.(2007全国高考),5在△ABC中,已知D是AB边上一点,若=2,=+λ,则λ等于()第201页\nA.B.C.-D.-答案:A知能训练本节练习解答:1.图略.2.=,=.点评:本题可先画一个示意图,根据图形容易得出正确答案.值得注意的是与反向.3.(1)b=2a;(2)b=a;(3)b=-a;(4)b=a.4.(1)共线;(2)共线.5.(1)3a-2a;(2)a+a;(3)2ya.6.图略.课堂小结1.让学生回顾本节学习的数学知识:向量的数乘运算法则,向量的数乘运算律,向量共线的条件,体会本节学习中用到的思想方法:特殊到一般,归纳、猜想、类比,分类讨论,等价转化.2.向量及其运算与数及其运算可以类比,这种类比是我们提高思想性的有效手段,在今后的学习中应予以充分的重视,它是我们学习中伟大的引路人.作业课本习题2.2A组题11、12.设计感想1.本教案的设计流程符合新课程理念,充分抓住本节教学中的学生探究、猜想、推证等活动,引导学生画出草图帮助理解题意和解决问题.先由学生探究向量数乘的结果还是向量(特别地0·a=0),它的几何意义是把向量a沿a的方向或a的反方向放大或缩小,当λ>0时,λa与a方向相同,当λ<0时,λa与a方向相反;向量共线定理用来判断两个向量是否共线.然后对所探究的结果进行运用拓展.2.向量具有的几何形式和代数形式的双重身份在本节中得以充分体现,因而成为中学数学知识网络的一个交汇点,由此可看出在中学数学教材中的地位的重要,也成为近几年各地高考命题的重点和热点,教师要引导学生对平面向量中有关知识要点进行归纳整理.2.3平面向量的基本定理及其坐标表示2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示整体设计教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.第201页\n在不共线的两个向量中,垂直是一种重要的特殊情形,向量的正交分解是向量分解中常用且重要的一种分解,因为在平面上,如果选取互相垂直的向量作为基底时,会给问题的研究带来方便.联系平面向量基本定理和向量的正交分解,由点在直角坐标系中的表示得到启发,要在平面直角坐标系中表示一个向量,最方便的是分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,这时,对于平面直角坐标系内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=xi+yj.于是,平面内的任一向量a都可由x、y唯一确定,而有序数对(x,y)正好是向量a的终点的坐标,这样的“巧合”使平面直角坐标系内的向量与坐标建立起一一映射,从而实现向量的“量化”表示,使我们在使用向量工具时得以实现“有效能算”的思想.三维目标1.通过探究活动,能推导并理解平面向量基本定理.2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.3.了解向量的夹角与垂直的概念,并能应用于平面向量的正交分解中,会把向量正交分解,会用坐标表示向量.重点难点教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.教学难点:平面向量基本定理的运用.课时安排1课时教学过程导入新课思路1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?又如一个放在斜面上的物体所受的竖直向下的重力G,可分解为使物体沿斜面下滑的力F1和使物体垂直于斜面且压紧斜面的力F2.我们知道飞机在起飞时若沿仰角α的方向起飞的速度为v,可分解为沿水平方向的速度vcosα和沿竖直方向的速度vsinα.从这两个实例可以看出,把一个向量分解到两个不同的方向,特别是作正交分解,即在两个互相垂直的方向上进行分解,是解决问题的一种十分重要的手段.如果e1、e2是同一平面内的两个不共线的向量,a是这一平面内的任一向量,那么a与e1、e2之间有什么关系呢?在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.在平面上,如果选取互相垂直的向量作为基底,是否会给我们带来更方便的研究呢?思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,在黑板上给出图象进行演示和讲解.如果条件允许,用多媒体教学,通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?推进新课新知探究提出问题图1①给定平面内任意两个不共线的非零向量e1、e2,请你作出向量3e1+2e2、e1-2e2.平面内的任一向量是否都可以用形如λ1e1+λ2e2的向量表示呢?②如图1,设e1、e2是同一平面内两个不共线的向量,a是这一平面内的任一向量,我们通过作图研究a与e1、e2之间的关系.活动:如图1,在平面内任取一点O,作=e1,=e2,=a.过点C作平行于直线OB的直线,与直线OA第201页\n;过点C作平行于直线OA的直线,与直线OB交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得=λ1e1,=λ2e2.由于,所以a=λ1e1+λ2e2.也就是说,任一向量a都可以表示成λ1e1+λ2e2的形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e1、e2表示出来.当e1、e2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.由此可得:平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.定理说明:(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式唯一.讨论结果:①可以.②a=λ1e1+λ2e2.提出问题①平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?②对平面中的任意一个向量能否用两个互相垂直的向量来表示?活动:引导学生结合向量的定义和性质,思考平面中的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:图2已知两个非零向量a和b(如图2),作=a,=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.显然,当θ=0°时,a与b同向;当θ=180°时,a与b反向.因此,两非零向量的夹角在区间[0°,180°]内.如果a与b的夹角是90°,我们说a与b垂直,记作a⊥b.由平面向量的基本定理,对平面上的任意向量a,均可以分解为不共线的两个向量λ1a1和λ2a2,使a=λ1a1+λ2a2.在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如上,重力G沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.讨论结果:①存在夹角且两个非零向量的夹角在区间[0°,180°]内;向量与直线的夹角不一样.②可以.提出问题①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?②在平面直角坐标系中,一个向量和坐标是否是一一对应的?第201页\n图3活动:如图3,在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=xi+yj①这样,平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y)②其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,②式叫做向量的坐标表示.显然,i=(1,0),j=(0,1),0=(0,0).教师应引导学生特别注意以下几点:(1)向量a与有序实数对(x,y)一一对应.(2)向量a的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,是表示a的有向线段,A1、B1的坐标分别为(x1,y1)、(x2,y2),则向量a的坐标为x=x2-x1,y=y2-y1,即a的坐标为(x2-x1,y2-y1).(3)为简化处理问题的过程,把坐标原点作为表示向量a的有向线段的起点,这时向量a的坐标就由表示向量a的有向线段的终点唯一确定了,即点A的坐标就是向量a的坐标,流程表示如下:讨论结果:①平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y).②是一一对应的.应用示例思路1例1如图4,ABCD,=a,=b,H、M是AD、DC之中点,F使BF=BC,以a,b为基底分解向量.图4活动:教师引导学生利用平面向量基本定理进行分解,让学生自己动手、动脑.教师可以让学生到黑板上板书步骤,并对书写认真且正确的同学提出表扬,对不能写出完整解题过程的同学给予提示和鼓励.解:由H、M、F所在位置,有=b+a.第201页\n=ab.点评:以a、b为基底分解向量与,实为用a与b表示向量与.变式训练图5已知向量e1、e2(如图5),求作向量-2.5e1+3e2.作法:(1)如图,任取一点O,作=-2.5e1,=3e2.(2)作OACB.故OC就是求作的向量.图6例2如图6,分别用基底i、j表示向量a、b、c、d,并求出它们的坐标.活动:本例要求用基底i、j表示a、b、c、d,其关键是把a、b、c、d表示为基底i、j的线性组合.一种方法是把a正交分解,看a在x轴、y轴上的分向量的大小.把向量a用i、j表示出来,进而得到向量a的坐标.另一种方法是把向量a移到坐标原点,则向量a终点的坐标就是向量a的坐标.同样的方法,可以得到向量b、c、d的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a与b关于y轴对称,a与c关于坐标原点中心对称,a与d关于x轴对称等.由一个向量的坐标推导出其他三个向量的坐标.解:由图可知,a=+=xi+yj,∴a=(2,3).同理,b=-2i+3j=(-2,3);c=-2i-3j=(-2,-3);d=2i-3j=(2,-3).点评:本例还可以得到启示,要充分运用图形之间的几何关系,求向量的坐标.变式训练第201页\ni,j是两个不共线的向量,已知=3i+2j,=i+λj,=-2i+j,若A、B、D三点共线,试求实数λ的值.解:∵=-=(-2i+j)-(i+λj)=-3i+(1-λ)j,又∵A、B、D三点共线,∴向量与共线.因此存在实数υ,使得=υ,即3i+2j=υ[-3i+(1-λ)j]=-3υi+υ(1-λ)j.∵i与j是两个不共线的向量,故∴∴当A、B、D三点共线时,λ=3.例3下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是()A.①②B.②③C.①③D.①②③活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.答案:B点评:本题主要考查的是学生对平面向量定理的理解.思路2图7例1如图7,M是△ABC内一点,且满足条件0,延长CM交AB于N,令=a,试用a表示.活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:推论1:e1与e2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e1+λ2e2=0,则λ1=λ2=0.推论2:e1与e2是同一平面内的两个不共线向量,若存在实数a1,a2,b1,b2,使得a=a1e1+a2e2=b1e1+b2e2,则解:∵∴由=0,得0.第201页\n∴=0.又∵A、N、B三点共线,C、M、N三点共线,由平行向量基本定理,设∴0.∴(λ+2)+(3+3μ)=0.由于和不共线,∴∴∴∴=2a.点评:这里选取作为基底,运用化归思想,把问题归结为λ1e1+λ2e2=0的形式来解决.变式训练设e1与e2是两个不共线向量,a=3e1+4e2,b=-2e1+5e2,若实数λ、μ满足λa+μb=5e1-e2,求λ、μ的值.解:由题设λa+μb=(3λe1+4λe2)+(-2μe1+5μe2)=(3λ-2μ)e1+(4λ+5μ)e2.又λa+μb=5e1-e2.由平面向量基本定理,知解之,得λ=1,μ=-1.图8例2如图8,△ABC中,AD为△ABC边上的中线且AE=2EC,求的值.活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值.解:设∵=,即-=-,∴=(+).又∵=λ=λ(-),∴==+.①第201页\n又∵=μ,即-=μ(-),∴(1+μ)=+μ=又=,∴=+.②比较①②,∵、不共线,∴解之,得∴点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.变式训练过△OAB的重心G的直线与边OA、OB分别交于P、Q,设=h,,试证:解:设=a,=b,OG交AB于D,则=()=(a+b)(图略).∴==(a+b),=(a+b)-kb=a+b,=ha-kb.∵P、G、Q三点共线,∴.∴a+b=λha-λkb.∴两式相除,得,∴=3.知能训练1.已知G为△ABC的重心,设=a,=b,试用a、b表示向量.2.已知向量a=(x+3,x2-3x-4)与相等,其中A(1,2),B(3,2),求x.第201页\n图9解答:1.如图9,=,而a+(b-a)=a+b,∴(a+b)=a+b.点评:利用向量加法、减法及数乘的几何意义.2.∵A(1,2),B(3,2),∴=(2,0).∵a=,∴(x+3,x2-3x-4)=(2,0).∴解得∴x=-1.点评:先将向量用坐标表示出来,然后利用两向量相等的条件就可使问题得到解决.课堂小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.2.教师与学生一起总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图.作业课本习题2.3A组1.设计感想1.本节课内容是为了研究向量方便而引入的一个新定理——平面向量基本定理.教科书首先通过“思考”:让学生思考对于平面内给定的任意两个向量进行加减的线性运算时所表示的新向量有什么特点,反过来,对平面内的任意向量是否都可以用形如λ1e1+λ2e2的向量表示.2.教师应该多提出问题,多让学生自己动手作图来发现规律,通过解题来总结方法,引导学生理解“化归”思想对解题的帮助,也要让学生善于用“数形结合”的思想来解决这部分的题.3.如果条件允许,借助多媒体进行教学会有意想不到的效果.整节课的教学主线应以学生练习为主,教师给与引导和提示.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决实际问题的方法就越恰当而简捷.第201页\n2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示整体设计教学分析1.前面学习了平面向量的坐标表示,实际是平面向量的代数表示.在引入了平面向量的坐标表示后可使向量完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.2.本小节主要是运用向量线性运算的交换律、结合律、分配律,推导两个向量的和的坐标、差的坐标以及数乘的坐标运算.推导的关键是灵活运用向量线性运算的交换律、结合律和分配律.3.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,一个自然的想法是向量的某些关系,特别是向量的平行、垂直,是否也能通过坐标来研究呢?前面已经找出两个向量共线的条件(如果存在实数λ,使得a=λb,那么a与b共线),本节则进一步地把向量共线的条件转化为坐标表示.这种转化是比较容易的,只要将向量用坐标表示出来,再运用向量相等的条件就可以得出平面向量共线的坐标表示.要注意的是,向量的共线与向量的平行是一致的.三维目标1.通过经历探究活动,使学生掌握平面向量的和、差、实数与向量的积的坐标表示方法.理解并掌握平面向量的坐标运算以及向量共线的坐标表示.2.引入平面向量的坐标可使向量运算完全代数化,平面向量的坐标成了数与形结合的载体.3.在解决问题过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识.重点难点教学重点:平面向量的坐标运算.教学难点:对平面向量共线的坐标表示的理解.课时安排1课时教学过程导入新课思路1.向量具有代数特征,与平面直角坐标系紧密相联.那么我们在学习直线和圆的方程以及点、直线、平面之间的位置关系时,直线与直线的平行是一种重要的关系.关于x、y的二元一次方程Ax+By+C=0(A、B不同时为零)何时所体现的两条直线平行?向量的共线用代数运算如何体现?思路2.对于平面内的任意向量a,过定点O作向量=a,则点A的位置被向量a的大小和方向所唯一确定.如果以定点O为原点建立平面直角坐标系,那么点A的位置可通过其坐标来反映,从而向量a也可以用坐标来表示,这样我就可以通过坐标来研究向量问题了.事实上,向量的坐标表示,实际是向量的代数表示.引入向量的坐标表示可使向量运算完全代数化,将数与形紧密结合起来,这就可以使很多几何问题的解答转化为学生熟知的数量运算.引进向量的坐标表示后,向量的线性运算可以通过坐标运算来实现,那么向量的平行、垂直,是否也能通过坐标来研究呢?推进新课新知探究提出问题①我们研究了平面向量的坐标表示,现在已知a=(x1,y1),b=(x2,y2),你能得出a+b,a-b,λa的坐标表示吗?②如图1,已知A(x1,y1),B(x2,y2),怎样表示的坐标?你能在图中标出坐标为(x2-x1,y2-y1)的P点吗?标出点P后,你能总结出什么结论?活动:教师让学生通过向量的坐标表示来进行两个向量的加、减运算,教师可以让学生到黑板去板书步骤.可得:第201页\n图1a+b=(x1i+y1j)+(x2i+y2j)=(x1+x2)i+(y1+y2)j,即a+b=(x1+x2,y1+y2).同理a-b=(x1-x2,y1-y2).又λa=λ(x1i+y1j)=λx1i+λy1j.∴λa=(λx1,λy1).教师和学生一起总结,把上述结论用文字叙述分别为:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.教师再引导学生找出点与向量的关系:将向量平移,使得点A与坐标原点O重合,则平移后的B点位置就是P点.向量的坐标与以原点为始点,点P为终点的向量坐标是相同的,这样就建立了向量的坐标与点的坐标之间的联系.学生通过平移也可以发现:向量的模与向量的模是相等的.由此,我们可以得出平面内两点间的距离公式:||=||=.教师对总结完全的同学进行表扬,并鼓励学生,只要善于开动脑筋,勇于创新,展开思维的翅膀,就一定能获得意想不到的收获.讨论结果:①能.②=-=(x2,y2)-(x1,y1)=(x2-x1,y2-y1).结论:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.提出问题①如何用坐标表示两个共线向量?②若a=(x1,y1),b=(x2,y2),那么是向量a、b共线的什么条件?活动:教师引导学生类比直线平行的特点来推导向量共线时的关系.此处教师要对探究困难的学生给以必要的点拨:设a=(x1,y1),b=(x2,y2),其中b≠0.我们知道,a、b共线,当且仅当存在实数λ,使a=λb.如果用坐标表示,可写为(x1,y1)=λ(x2,y2),即消去λ后得x1y2-x2y1=0.这就是说,当且仅当x1y2-x2y1=0时向量a、b(b≠0)共线.又我们知道x1y2-x2y1=0与x1y2=x2y1是等价的,但这与是不等价的.因为当x1=x2=0时,x1y2-x2y1=0成立,但均无意义.因此是向量a、b共线的充分不必要条件.由此也看出向量的应用更具一般性,更简捷、实用,让学生仔细体会这点.第201页\n讨论结果:①x1y2-x2y1=0时,向量a、b(b≠0)共线.②充分不必要条件.提出问题a与非零向量b为共线向量的充要条件是有且只有一个实数λ使得a=λb,那么这个充要条件如何用坐标来表示呢?活动:教师引导推证:设a=(x1,y1),b=(x2,y2),其中b≠a,由a=λb,(x1,y1)=λ(x2,y2)消去λ,得x1y2-x2y1=0.讨论结果:a∥b(b≠0)的充要条件是x1y2-x2y1=0.教师应向学生特别提醒感悟:1°消去λ时不能两式相除,∵y1、y2有可能为0,而b≠0,∴x2、y2中至少有一个不为0.2°充要条件不能写成(∵x1、x2有可能为0).3°从而向量共线的充要条件有两种形式:a∥b(b≠0)应用示例思路1例1已知a=(2,1),b=(-3,4),求a+b,a-b,3a+4b的坐标.活动:本例是向量代数运算的简单应用,让学生根据向量的线性运算进行向量的和、差及数乘的坐标运算,再根据向量的线性运算律和向量的坐标概念得出的结论.若已知表示向量的有向线段的始点和终点坐标,那么终点的坐标减去始点的坐标就是此向量的坐标,从而使得向量的坐标与点的坐标可以相互转化.可由学生自己完成.解:a+b=(2,1)+(-3,4)=(-1,5);a-b=(2,1)-(-3,4)=(5,-3);3a+4b=3(2,1)+4(-3,4)=(6,3)+(-12,16)=(-6,19).点评:本例是平面向量坐标运算的常规题,目的是熟悉平面向量的坐标运算公式.变式训练1.(2007海南高考,4)已知平面向量a=(1,1),b=(1,-1),则向量ab等于()A.(-2,-1)B.(-2,1)C.(-1,0)D.(-1,2)答案:D2.(2007全国高考,3)已知向量a=(-5,6),b=(6,5),则a与b…()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向答案:A图2例2如图2,已知ABCD的三个顶点A、B、C的坐标分别是(-2,1)、(-1,3)、(3,4),试求顶点D的坐标.活动:第201页\n本例的目的仍然是让学生熟悉平面向量的坐标运算.这里给出了两种解法:解法一利用“两个向量相等,则它们的坐标相等”,解题过程中应用了方程思想;解法二利用向量加法的平行四边形法则求得向量的坐标,进而得到点D的坐标.解题过程中,关键是充分利用图形中各线段的位置关系(主要是平行关系),数形结合地思考,将顶点D的坐标表示为已知点的坐标.解:方法一:如图2,设顶点D的坐标为(x,y).∵=(-1-(-2),3-1)=(1,2),=(3-x,4-y).由=,得(1,2)=(3-x,4-y).∴∴∴顶点D的坐标为(2,2).方法二:如图2,由向量加法的平行四边形法则,可知=(-2-(-1),1-3)+(3-(-1),4-3)=(3,-1),而=+=(-1,3)+(3,-1)=(2,2),∴顶点D的坐标为(2,2).点评:本例的目的仍然是让学生熟悉平面向量的坐标运算.变式训练图3如图3,已知平面上三点的坐标分别为A(-2,1),B(-1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点.解:当平行四边形为ABCD时,仿例二得:D1=(2,2);当平行四边形为ACDB时,仿例二得:D2=(4,6);当平行四边形为DACB时,仿上得:D3=(-6,0).例3已知A(-1,-1),B(1,3),C(2,5),试判断A、B、C三点之间的位置关系.活动:教师引导学生利用向量的共线来判断.首先要探究三个点组合成两个向量,然后根据两个向量共线的充要条件来判断这两个向量是否共线从而来判断这三点是否共线.教师引导学生进一步理解并熟练地运用向量共线的坐标形式来判断向量之间的关系.让学生通过观察图象领悟先猜后证的思维方式.解:在平面直角坐标系中作出A、B、C三点,观察图形,我们猜想A、B、C三点共线.下面给出证明.∵=(1-(-1),3-(-1))=(2,4),=(2-(-1),5-(-1))=(3,6),又2×6-3×4=0,∴∥,且直线AB、直线AC有公共点A,∴A、B、C三点共线.点评:本例的解答给出了判断三点共线的一种常用方法,其实质是从同一点出发的两个向量共线,则这两个向量的三个顶点共线.这是从平面几何中判断三点共线的方法移植过来的.变式训练已知a=(4,2),b=(6,y),且a∥b,求y.第201页\n解:∵a∥b,∴4y-2×6=0.∴y=3.思路2例2设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1)、(x2,y2).(1)当点P是线段P1P2的中点时,求点P的坐标;(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.活动:教师充分让学生思考,并提出这一结论可以推广吗?即当=λ时,点P的坐标是什么?师生共同讨论,一起探究,可按照求中点坐标的解题思路类比推广,有学生可能提出如下推理方法:由=λ,知(x-x1,y-y1)=λ(x2-x,y2-y),即这就是线段的定比分点公式,教师要给予充分肯定,鼓励学生的这种积极探索,这是学习数学的重要品质.时间允许的话,可以探索λ的取值符号对P点位置的影响,也可鼓励学生课后探索.图4解:(1)如图4,由向量的线性运算可知=(1+2)=().所以点P的坐标是()(2)如图5,当点P是线段P1P2的一个三等分点时,有两种情况,即=或=2.如果=,那么图5第201页\n=+=+=+(-)=+=().即点P的坐标是().同理,如果=2,那么点P的坐标是点评:本例实际上给出了线段的中点坐标公式和线段的三等分点坐标公式.变式训练在△ABC中,已知点A(3,7)、B(-2,5).若线段AC、BC的中点都在坐标轴上,求点C的坐标.解:(1)若AC的中点在y轴上,则BC的中点在x轴上,设点C的坐标为(x,y),由中点坐标公式,得∴x=-3,y=-5,即C点坐标为(-3,-5).(2)若AC的中点在x轴上,则BC的中点在y轴上,则同理可得C点坐标为(2,-7).综合(1)(2),知C点坐标为(-3,-5)或(2,-7).例2已知点A(1,2),B(4,5),O为坐标原点,=+t.若点P在第二象限,求实数t的取值范围.活动:教师引导学生利用向量的坐标运算以及向量的相等,把已知条件转化为含参数的方程(组)或不等式(组)再进行求解.教师以提问的方式来了解学生组织步骤的能力,或者让学生到黑板上去板书解题过程,并对思路清晰过程正确的同学进行表扬,同时也要对组织步骤不完全的同学给与提示和鼓励.教师要让学生明白“化归”思想的利用.不等式求变量取值范围的基本观点是,将已知条件转化为关于变量的不等式(组),那么变量的取值范围就是这个不等式(组)的解集.解:由已知=(4,5)-(1,2)=(3,3).∴=(1,2)+t(3,3)=(3t+1,3t+2).若点P在第二象限,则故t的取值范围是(,).点评:此题通过向量的坐标运算,将点P的坐标用t表示,由点P在第二象限可得到一个关于t的不等式组,这个不等式组的解集就是t的取值范围.变式训练已知=(cosθ,sinθ),=(1+sinθ,1+cosθ),其中0≤θ≤π,求||的取值范围.解:∵=-=(1+sinθ,1+cosθ)-(cosθ,sinθ)第201页\n=(1+sinθ-cosθ,1+cosθ-sinθ).∴||2=(1+sinθ-cosθ)2+(1+cosθ-sinθ)2=[1+(sinθ-cosθ)]2+[1-(sinθ-cosθ)]2=2+2(sinθ-cosθ)2=2+2(1-2sinθcosθ)=4-4sinθcosθ=4-2sin2θ.∵0≤θ≤π,∴0≤2θ≤2π.从而-1≤sin2θ≤1.∴4-2sin2θ∈[2,6].故||的取值范围是[,].知能训练课本本节练习.解答:1.(1)a+b=(3,6),a-b=(-7,2);(2)a+b=(1,11),a-b=(7,-5);(3)a+b=(0,0),a-b=(4,6);(4)a+b=(3,4),a-b=(3,-4).2.-2a+4b=(-6,-8),4a+3b=(12,5).3.(1)=(3,4),=(-3,-4);(2)=(9,-1),=(-9,1);(3)=(0,2),=(0,-2);(4)=(5,0),=(-5,0).4.∥.证明:=(1,-1),=(1,-1),所以=.所以AB∥CD.点评:本题有两个要求:一是判断,二是证明.通过作图发现规律,提出猜想,然后再证明结论是一个让学生经历数学化的过程.5.(1)(3,2);(2)(1,4);(3)(4,-5).6.(,1)或(,-1).7.解:设P(x,y),由点P在线段AB的延长线上,且||=||,得(x-2,y-3)=(x-4,y+3),即解之,得所以点P的坐标为(8,-15).点评:本题希望通过向量方法求解,培养学生应用向量的意识.课堂小结1.先由学生回顾本节都学习了哪些数学知识:平面向量的和、差、数乘的坐标运算,两个向量共线的坐标表示.2.教师与学生一起总结本节学习的数学方法,定义法、归纳、整理、概括的思想,强调在今后的学习中,要善于培养自己不断探索、善于发现、勇于创新的科学态度和求实开拓的精神,为将来的发展打下良好基础.作业课本习题2.3A组5、6.设计感想第201页\n1.本节课中向量的坐标表示及运算实际上是向量的代数运算.这对学生来说学习并不困难,可大胆让学生自己探究.本教案设计流程符合新课改精神.教师在引导学生探究时,始终抓住向量具有几何与代数的双重属性这一特征和向量具有数与形紧密结合的特点.让学生在了解向量知识网络结构基础上,进一步熟悉向量的坐标表示以及运算法则、运算律,能熟练向量代数化的重要作用和实际生活中的应用,并加强数学应用意识,提高分析问题、解决问题的能力.2.平面向量的坐标运算包括向量的代数运算与几何运算.相比较而言,学生对向量的代数运算要容易接受一些,但对向量的几何运算往往感到比较困难,无从下手.向量的几何运算主要包括向量加减法的几何运算,向量平行与垂直的充要条件及定比分点的向量式等.3.通过平面向量坐标的加、减代数运算,结合图形,不但可以建立向量的坐标与点的坐标之间的联系,而且教师可在这两题的基础上稍作推广,就可通过求向量的模而得到直角坐标系内的两点间的距离公式甚至可以推出中点坐标公式.它们在处理平面几何的有关问题时,往往有其独到之处,教师可让学有余力的学生课下继续探讨,以提高学生的思维发散能力.第201页\n2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义整体设计教学分析前面已经知道,向量的线性运算有非常明确的几何意义,因此利用向量运算可以讨论一些几何元素的位置关系.既然向量可以进行加减运算,一个自然的想法是两个向量能否做乘法运算呢?如果能,运算结果应该是什么呢?另外,距离和角是刻画几何元素(点、线、面)之间度量关系的基本量.我们需要一个向量运算来反映向量的长度和两个向量间夹角的关系.众所周知,向量概念的引入与物理学的研究密切相关,物理学家很早就知道,如果一个物体在力F的作用下产生位移s(如图1),那么力F所做的功图1W=|F||s|cosθ功W是一个数量,其中既涉及“长度”,也涉及“角”,而且只与向量F,s有关.熟悉的数的运算启发我们把上式解释为两个向量的运算,从而引进向量的数量积的定义a·b=|a||b|cosθ.这是一个好定义,它不仅满足人们熟悉的运算律(如交换律、分配律等),而且还可以用它来更加简洁地表述几何中的许多结果.向量的数量积是一种新的向量运算,与向量的加法、减法、数乘运算一样,它也有明显的物理意义、几何意义.但与向量的线性运算不同的是,它的运算结果不是向量而是数量.三维目标1.通过经历探究过程,掌握平面向量的数量积及其几何意义.掌握平面向量数量积的重要性质及运算律.2.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,并掌握向量垂直的条件.3.通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力.重点难点教学重点:平面向量数量积的定义.教学难点:平面向量数量积的定义及其运算律的理解和平面向量数量积的应用.课时安排1课时教学过程导入新课思路1.我们前面知道向量概念的原型就是物理中的力、速度、位移以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰,并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究.在物理课中,我们学过功的概念,即如果一个物体在力F的作用下产生位移s,那么力F所做的功W可由下式计算:W=|F||s|cosθ其中θ是F与s的夹角.我们知道力和位移都是向量,而功是一个标量(数量).故从力所做的功出发,我们就顺其自然地引入向量数量积的概念.思路2第201页\n.前面我们已学过,任意的两个向量都可以进行加减运算,并且两个向量的和与差仍是一个向量.我们结合任意的两个实数之间可以进行加减乘除(除数不为零)运算,就自然地会想到,任意的两个向量是否可以进行乘法运算呢?如果能,其运算结果是什么呢?推进新课新知探究提出问题①a·b的运算结果是向量还是数量?它的名称是什么?②由所学知识可以知道,任何一种运算都有其相应的运算律,数量积是一种向量的乘法运算,它是否满足实数的乘法运算律?③我们知道,对任意a,b∈R,恒有(a+b)2=a2+2ab+b2,(a+b)(a-b)=a2-b2.对任意向量a、b,是否也有下面类似的结论?(1)(a+b)2=a2+2a·b+b2;(2)(a+b)·(a-b)=a2-b2.活动:已知两个非零向量a与b,我们把数量|a||b|cosθ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cosθ(0≤θ≤π).其中θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影.如图2为两向量数量积的关系,并且可以知道向量夹角的范围是0°≤θ≤180°.图2在教师与学生一起探究的活动中,应特别点拨引导学生注意:(1)两个非零向量的数量积是个数量,而不是向量,它的值为两向量的模与两向量夹角的余弦的乘积;(2)零向量与任一向量的数量积为0,即a·0=0;(3)符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替;(4)当0≤θ<时cosθ>0,从而a·b>0;当<θ≤π时,cosθ<0,从而a·b<0.与学生共同探究并证明数量积的运算律.已知a,b,c和实数λ,则向量的数量积满足下列运算律:①a·b=b·a(交换律);②(λa)·b=λ(a·b)=a·(λb)(数乘结合律);③(a+b)·c=a·c+b·c(分配律).特别是:(1)当a≠0时,由a·b=0不能推出b一定是零向量.这是因为任一与a垂直的非零向量b,都有a·b=0.图3(2)已知实数a、b、c(b≠0),则ab=bca=c.但对向量的数量积,该推理不正确,即a·b=b·c不能推出a=c.由图3很容易看出,虽然a·b=b·c,但a≠c.(3)对于实数a、b、c有(a·b)c=a(b·c);但对于向量a、b、c,(a·b)c=a(b·c)不成立.这是因为(a·b)c表示一个与c共线的向量,而a(b·c)表示一个与a共线的向量,而c与a不一定共线,所以(a·b)c=a(b·c)不成立.讨论结果:①是数量,叫数量积.②数量积满足a·b=b·a(交换律);(λa)·b=λ(a·b)=a·(λb)(数乘结合律);(a+b)·c=a·c+b·c(分配律).第201页\n③(1)(a+b)2=(a+b)·(a+b)=a·b+a·b+b·a+b·b=a2+2a·b+b2;(2)(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.提出问题①如何理解向量的投影与数量积?它们与向量之间有什么关系?②能用“投影”来解释数量积的几何意义吗?活动:教师引导学生来总结投影的概念,可以结合“探究”,让学生用平面向量的数量积的定义,从数与形两个角度进行探索研究.教师给出图形并作结论性的总结,提出注意点“投影”的概念,如图4.图4定义:|b|cosθ叫做向量b在a方向上的投影.并引导学生思考:1°投影也是一个数量,不是向量;2°当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0°时投影为|b|;当θ=180°时投影为-|b|.教师结合学生对“投影”的理解,让学生总结出向量的数量积的几何意义:数量积a·b等于a的长度与b在a方向上投影|b|cosθ的乘积.让学生思考:这个投影值可正、可负,也可为零,所以我们说向量的数量积的结果是一个实数.教师和学生共同总结两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1°e·a=a·e=|a|cosθ.2°a⊥ba·b=0.3°当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|.特别地a·a=|a|2或|a|=.4°cosθ=.5°|a·b|≤|a||b|.上述性质要求学生结合数量积的定义自己尝试推证,教师给予必要的补充和提示,在推导过程中理解并记忆这些性质.讨论结果:①略(见活动).②向量的数量积的几何意义为数量积a·b等于a的长度与b在a方向上投影|b|cosθ的乘积.应用示例思路1例1已知平面上三点A、B、C满足||=2,||=1,||=,求·+·+的值.活动:教师引导学生利用向量的数量积并结合两向量的夹角来求解,先分析题设然后找到所需条件.因为已知、、的长度,要求得两两之间的数量积,必须先求出两两之间的夹角.结合勾股定理可以注意到△A是直角三角形,然后可利用数形结合来求解结果.第201页\n解:由已知,||2+||2=||2,所以△ABC是直角三角形.而且∠ACB=90°,从而sin∠ABC=,sin∠BAC=.∴∠ABC=60°,∠BAC=30°.∴与的夹角为120°,与的夹角为90°,与的夹角为150°.故·+·+·=2×1×cos120°+1×cos90°+×2cos150°=-4.点评:确定两个向量的夹角,应先平移向量,使它们的起点相同,再考察其角的大小,而不是简单地看成两条线段的夹角,如例题中与的夹角是120°,而不是60°.变式训练已知|a|=6,|b|=4,a与b的夹角为60°,求(a+2b)·(a-3b).解:(a+2b)·(a-3b)=a·a-a·b-6b·b=|a|2-a·b-6|b|2=|a|2-|a||b|cosθ-6|b|2=62-6×4×cos60°-6×42=-72.例2已知|a|=3,|b|=4,且a与b不共线,当k为何值时,向量a+kb与a-kb互相垂直?解:a+kb与a-kb互相垂直的条件是(a+kb)·(a-kb)=0,即a2-k2b2=0.∵a2=32=9,b2=42=16,∴9-16k2=0.∴k=±.也就是说,当k=±时,a+kb与a-kb互相垂直.点评:本题主要考查向量的数量积性质中垂直的充要条件.变式训练已知向量a、b满足:a2=9,a·b=-12,求|b|的取值范围.解:∵|a|2=a2=9,∴|a|=3.又∵a·b=-12,∴|a·b|=12.∵|a·b|≤|a||b|,∴12≤3|b|,|b|≥4.故|b|的取值范围是[4,+∞).思路2例1已知在四边形ABCD中,=a,=b,=c,=d,且a·b=c·d=b·c=d·a,试问四边形ABCD的形状如何?第201页\n解:∵+++=0,即a+b+c+d=0,∴a+b=-(c+d).由上可得(a+b)2=(c+d)2,即a2+2a·b+b2=c2+2c·d+d2.又∵a·b=c·d,故a2+b2=c2+d2.同理可得a2+d2=b2+c2.由上两式可得a2=c2,且b2=d2,即|a|=|c|,且|b|=|d|,也即AB=CD,且BC=DA,∴ABCD是平行四边形.故=,即a=-c.又a·b=b·c=-a·b,即a·b=0,∴a⊥b,即⊥.综上所述,ABCD是矩形.点评:本题考查的是向量数量积的性质应用,利用向量的数量积解决有关垂直问题,然后结合四边形的特点进而判断四边形的形状.例2已知a,b是两个非零向量,且|a|-|b|=|a+b|,求向量b与a-b的夹角.活动:教师引导学生利用向量减法的平行四边形法则,画出以a,b为邻边的ABCD,若=a,=b,则=a+b,=a-b.由|a|-|b|=|a+b|,可知∠ABC=60°,b与所成角是150°.我们还可以利用数量积的运算,得出向量b与a-b的夹角,为了巩固数量积的有关知识,我们采用另外一种角度来思考问题,教师给予必要的点拨和指导,即由cos〈b,a-b〉=作为切入点,进行求解.解:∵|b|=|a+b|,|b|=|a|,∴b2=(a+b)2.∴|b|2=|a|2+2a·b+|b|2.∴a·b=-|b|2.而b·(a-b)=b·a-b2=|b|2-|b|2=|b|2,①由(a-b)2=a2-2a·b+b2=|b|2-2×()|b|2+|b|2=3|b|2,而|a-b|2=(a-b)2=3|b|2,∴|a-b|=3|b|.②∵cos〈b,a-b〉=代入①②,得cos〈b,a-b〉=-.又∵〈b,a-b〉∈[0,π],第201页\n∴〈b,a-b〉=.点评:本题考查的是利用平面向量的数量积解决有关夹角问题,解完后教师及时引导学生对本解法进行反思、总结、体会.变式训练设向量c=ma+nb(m,n∈R),已知|a|=2,|c|=4,a⊥c,b·c=-4,且b与c的夹角为120°,求m,n的值.解:∵a⊥c,∴a·c=0.又c=ma+nb,∴c·c=(ma+nb)·c,即|c|2=ma·c+nb·c.∴|c|2=nb·c.由已知|c|2=16,b·c=-4,∴16=-4n.∴n=-4.从而c=ma-4b.∵b·c=|b||c|cos120°=-4,∴|b|·4·()=-4.∴|b|=2.由c=ma-4b,得a·c=ma2-4a·b,∴8m-4a·b=0,即a·b=2m.①再由c=ma-4b,得b·c=ma·b-4b2.∴ma·b-16=-4,即ma·b=12.②联立①②得2m2=12,即m2=6.∴m=±.故m=±,n=-4.知能训练课本本节练习.解答:1.p·q=24.2.a·b<0时,△ABC为钝角三角形;a·b=0时,△ABC为直角三角形.3.投影分别为3,0,-3.图略.课堂小结1.先由学生回顾本节学习的数学知识,数量积的定义、几何意义,数量积的重要性质,数量积的运算律.2.教师与学生总结本节学习的数学方法,归纳类比、定义法、数形结合等.在领悟数学思想方法的同时,鼓励学生多角度、发散性地思考问题,并鼓励学生进行一题多解.作业课本习题2.4A组2、3、4.设计感想本节的重要性是显而易见的,但本节有几个常见思维误区:不能正确理解向量夹角的定义,两个向量夹角的定义是指同一点出发的两个向量所构成的较小的非负角,因此向量夹角定义理解不清而造成解题错误是一些常见的误区.同时利用向量的数量积不但可以解决两向量垂直问题,而且还可以解决两向量共线问题,要深刻理解两向量共线、垂直的充要条件,应用的时候才能得心应手.第201页\n2.4.2平面向量数量积的坐标表示、模、夹角整体设计教学分析平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.三维目标1.通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法.2.掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.3.通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力,培养学生的创新能力,提高学生的数学素质.重点难点教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.课时安排1课时教学过程导入新课思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.推进新课新知探究提出问题①平面向量的数量积能否用坐标表示?②已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b的坐标表示a·b呢?③怎样用向量的坐标表示两个平面向量垂直的条件?④你能否根据所学知识推导出向量的长度、距离和夹角公式?活动:第201页\n教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下:∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.又∵i·i=1,j·j=1,i·j=j·i=0,∴a·b=x1x2+y1y2.教师给出结论性的总结,由此可归纳如下:1°平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和,即a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.2°向量模的坐标表示若a=(x,y),则|a|2=x2+y2,或|a|=.如果表示向量a的有向线段的起点和终点的坐标分别为(x1,y1)、(x2,y2),那么a=(x2-x1,y2-y1),|a|=3°两向量垂直的坐标表示设a=(x1,y1),b=(x2,y2),则a⊥bx1x2+y1y2=0.4°两向量夹角的坐标表示设a、b都是非零向量,a=(x1,y1),b=(x2,y2),θ是a与b的夹角,根据向量数量积的定义及坐标表示,可得cosθ=讨论结果:略.应用示例例1已知A(1,2),B(2,3),C(-2,5),试判断△ABC的形状,并给出证明.活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A(1,2),B(2,3),C(-2,5)三点,我们发现△ABC是直角三角形.下面给出证明.∵=(2-1,3-2)=(1,1),=(-2-1,5-2)=(-3,3),∴·=1×(-3)+1×3=0.∴⊥.第201页\n∴△ABC是直角三角形.点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你的结论给出充分的证明.变式训练在△ABC中,=(2,3),=(1,k),且△ABC的一个内角为直角,求k的值.解:由于题设中未指明哪一个角为直角,故需分别讨论.若∠A=90°,则⊥,所以·=0.于是2×1+3k=0.故k=.同理可求,若∠B=90°时,k的值为;若∠C=90°时,k的值为.故所求k的值为或或.例2(1)已知三点A(2,-2),B(5,1),C(1,4),求∠BAC的余弦值;(2)a=(3,0),b=(-5,5),求a与b的夹角.活动:教师让学生利用向量的坐标运算求出两向量a=(x1,y1)与b=(x2,y2)的数量积a·b=x1x2+y1y2和模|a|=,|b|=的积,其比值就是这两个向量夹角的余弦值,即cosθ=.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.解:(1)=(5,1)-(2,-2)=(3,3),=(1,4)-(2,-2)=(-1,6),∴·=3×(-1)+3×6=15.又∵||==3,||==,∴cos∠BAC=(2)a·b=3×(-5)+0×5=-15,|a|=3,|b|=52.设a与b的夹角为θ,则cosθ=又∵0≤θ≤π,∴θ=.点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与求解主要是对基础知识的巩固与提高.变式训练设a=(5,-7),b=(-6,-4),求a·b及a、b间的夹角θ.(精确到1°)第201页\n解:a·b=5×(-6)+(-7)×(-4)=-30+28=-2.|a|=,|b|=由计算器得cosθ=≈-0.03.利用计算器中得θ≈92°.例3已知|a|=3,b=(2,3),试分别解答下面两个问题:(1)若a⊥b,求a;(2)若a∥b,求a.活动:对平面中的两向量a=(x1,y1)与b=(x2,y2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x1x2+y1y2=0与向量共线的坐标表示x1y2-x2y1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a·b=0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的同式变形训练.解:(1)设a=(x,y),由|a|=3且a⊥b,得解得∴a=a=(2)设a=(x,y),由|a|=3且a∥b,得解得或∴a=a=.点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断垂直或者共线,也能熟练地进行公式的逆用,利用已知关系来求向量的坐标.变式训练求证:一次函数y=2x-3的图象(直线l1)与一次函数y=x的图象(直线l2)互相垂直.解:在l1:y=2x-3中,令x=1得y=-1;令x=2得y=1,即在l1上取两点A(1,-1),B(2,1).同理,在直线l2上取两点C(-2,1),D(-4,2),于是:=(2,1)-(1,-1)=(2-1,1+1)=(1,2),第201页\n=(-4,2)-(-2,1)=(-4+2,2-1)=(-2,1).由向量的数量积的坐标表示,可得·=1×(-2)+1×2=0,∴⊥,即l1⊥l2.知能训练课本本节练习.解答:1.|a|=5,|b|=,a·b=-7.2.a·b=8,(a+b)·(a-b)=-7,a·(a+b)=0,(a+b)2=49.3.a·b=1,|a|=,|b|=,θ≈88°.课堂小结1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.作业课本习题2.4A组8、9、10.设计感想由于本节课是对平面向量的进一步探究与应用,是对平面向量几何意义的综合研究提高,因此教案设计流程是探究、发现、应用、提高,这符合新课程理念,符合新课标要求.我们知道平面向量的数量积是本章最重要的内容,也是高考中的重点,既有选择题、填空题,也有解答题(大多同立体几何、解析几何综合考查),故学习时要熟练掌握基本概念和性质及其综合运用.而且数量积的坐标表示又是向量运算的一个重要内容,用坐标表示直角坐标平面内点的位置,是解析几何的一个基本特征,从而以坐标为桥梁可以建立向量与解析几何的内在联系.以三角函数表示点的坐标,又可以沟通向量与三角函数的相互关系,由此就产生出一类向量与解析几何及三角函数交汇的综合性问题.平面向量数量积的坐标表示使得向量数量积的应用更为方便,也拓宽了向量应用的途径.通过学习本节的内容,要更加加深对向量数量积概念的理解,同时善于运用坐标形式运算解决数量问题,尤其是有关向量的夹角、长度、垂直等,往往可以使问题简单化.灵活使用坐标形式,综合处理向量的线性运算、数量积、平行等,综合地解决向量综合题,体现数形结合的思想.在本节的学习中可以通过对实际问题的抽象来培养学生分析问题、解决问题和应用知识解决问题的意识与能力.第201页\n2.5平面向量应用举例2.5.1平面几何中的向量方法整体设计教学分析1.本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为:则向量方法的流程图可以简单地表述为:这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点.2.研究几何可以采取不同的方法,这些方法包括:综合方法——不使用其他工具,对几何元素及其关系直接进行讨论;解析方法——以数(代数式)和数(代数式)的运算为工具,对几何元素及其关系进行讨论;向量方法——以向量和向量的运算为工具,对几何元素及其关系进行讨论;分析方法——以微积分为工具,对几何元素及其关系进行讨论,等等.前三种方法都是中学数学中出现的内容.有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化.三维目标1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”.2.明了平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.3.通过本节学习,让学生深刻理解向量在处理有关平面几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段.重点难点教学重点:用向量方法解决实际问题的基本方法;向量法解决几何问题的“三步曲”.教学难点:如何将几何等实际问题化归为向量问题.课时安排1课时教学过程导入新课思路1.(直接导入)向量的概念和运算都有着明确的物理背景和几何背景,当向量和平面坐标系结合后,向量的运算就完全可以转化为代数运算.这就为我们解决物理问题和几何研究带来了极大的方便.本节专门研究平面几何中的向量方法.思路2.(情境导入)由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题.下面通过几个具体实例,说明向量方法在平面几何中的运用.推进新课新知探究提出问题第201页\n图1①平行四边形是表示向量加法和减法的几何模型,如图1,你能观察、发现并猜想出平行四边形对角线的长度与两邻边长度之间有什么关系吗?②你能利用所学知识证明你的猜想吗?能利用所学的向量方法证明吗?试一试可用哪些方法?③你能总结一下利用平面向量解决平面几何问题的基本思路吗?活动:①教师引导学生猜想平行四边形对角线的长度与两邻边长度之间有什么关系.利用类比的思想方法,猜想平行四边形有没有相似关系.指导学生猜想出结论:平行四边形两条对角线的平方和等于四条边的平方和.②教师引导学生探究证明方法,并点拨学生对各种方法分析比较,平行四边形是学生熟悉的重要的几何图形,在平面几何的学习中,学生得到了它的许多性质,有些性质的得出比较麻烦,有些性质的得出比较简单.让学生体会研究几何可以采取不同的方法,这些方法包括综合方法、解析方法、向量方法.图2证明:方法一:如图2.作CE⊥AB于E,DF⊥AB于F,则Rt△ADF≌Rt△BCE.∴AD=BC,AF=BE.由于ACAE2+CE2=(AB+BE)2+CE2=AB2+2AB·BE+BE2+CE2=AB2+2AB·BE+BC2.BD2=BF2+DF2=(AB-AF)2+DF2=AB2-2AB·AF+AF2+DF2=AB2-2AB·AF+AD2=AB2-2AB·BE+BC2.∴AC2+BD2=2(AB2+BC2).图3方法二:如图3.以AB所在直线为x轴,A为坐标原点建立直角坐标系.设B(a,0),D(b,c),则C(a+b,c).∴|AC|2=(a+b)2+c2=a2+2ab+b2+c2,|BD|2=(a-b)2+(-c)2=a2-2ab+b2+c2.∴|AC|2+|BD|2=2a2+2(b2+c2)=2(|AB|2+|AD|2).用向量方法推导了平行四边形的两条对角线与两条邻边之间的关系.在用向量方法解决涉及长度、夹角的问题时,常常考虑用向量的数量积.通过以下推导学生可以发现,由于向量能够运算,因此它在解决某些几何问题时具有优越性,它把一个思辨过程变成了一个算法过程,学生可按一定的程序进行运算操作,从而降低了思考问题的难度,同时也为计算机技术的运用提供了方便.教学时应引导学生体会向量带来的优越性.因为平行四边形对角线平行且相等,考虑到向量关系=-,=+,教师可点拨学生设=a,=b,其他线段对应向量用它们表示,涉及长度问题常常考虑向量的数量积,为此,我们计算||2与||2.因此有了方法三.方法三:设=a,=b,则=a+b,=a-b,||2=|a|2,||2=|b|2.第201页\n∴||2=·=(a+b)·(a+b)=a·a+a·b+b·a+b·b=|a|2+2a·b+|b|2.①同理||2=|a|2-2a·b+|b|2.②观察①②两式的特点,我们发现,①+②得||2+||2=2(|a|2+|b|2)=2(||2+||2),即平行四边形两条对角线的平方和等于两条邻边平方和的两倍.③至此,为解决重点问题所作的铺垫已经完成,向前发展可以说水到渠成.教师充分让学生对以上各种方法进行分析比较,讨论认清向量方法的优越性,适时引导学生归纳用向量方法处理平面几何问题的一般步骤.由于平面几何经常涉及距离(线段长度)、夹角问题,而平面向量的运算,特别是数量积主要涉及向量的模以及向量之间的夹角,因此我们可以用向量方法解决部分几何问题.解决几何问题时,先用向量表示相应的点、线段、夹角等几何元素.然后通过向量的运算,特别是数量积来研究点、线段等元素之间的关系.最后再把运算结果“翻译”成几何关系,得到几何问题的结论.这就是用向量方法解决平面几何问题的“三步曲”,即(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3)把运算结果“翻译”成几何关系.讨论结果:①能.②能想出至少三种证明方法.③略.应用示例图4例1如图4,ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?活动:为了培养学生的观察、发现、猜想能力,让学生能动态地发现图形中AR、RT、TC之间的相等关系,教学中可以充分利用多媒体,作出上述图形,测量AR、RT、TC的长度,让学生发现AR=RT=TC,拖动平行四边形的顶点,动态观察发现,AR=RT=TC这个规律不变,因此猜想AR=RT=TC.事实上,由于R、T是对角线AC上的两点,要判断AR、RT、TC之间的关系,只需分别判断AR、RT、TC与AC的关系即可.又因为AR、RT、TC、AC共线,所以只需判断与之间的关系即可.探究过程对照用向量方法解决平面几何问题的“三步曲”很容易地可得到结论.第一步,建立平面几何与向量的联系,用向量表示问题中的几何元素,将平面几何问题转化为向量问题;第二步,通过向量运算,研究几何元素之间的关系;第三步,把运算结果“翻译”成几何关系:AR=RT=TC.解:如图4,设=a,=b,=r,=t,则=a+b.由于与共线,所以我们设r=n(a+b),n∈R.又因为=-=a-b,与共线,第201页\n所以我们设=m=m(a-b).因为,所以r=b+m(a-b).因此n(a+b)=b+m(a-b),即(n-m)a+(n+)b=0.由于向量a、b不共线,要使上式为0,必须解得n=m=.所以=,同理=.于是=.所以AR=RT=TC.点评:教材中本例重在说明是如何利用向量的办法找出这个相等关系的,因此在书写时可简化一些程序.指导学生在今后的训练中,不必列出三个步骤.变式训练图5如图5,AD、BE、CF是△ABC的三条高.求证:AD、BE、CF相交于一点.证明:设BE、CF相交于H,并设=b,=c,=h,则=h-b,=h-c,=c-b.因为⊥,⊥,所以(h-b)·c=0,(h-c)·b=0,即(h-b)·c=(h-c)·b.化简得h·(c-b)=0.所以⊥.所以AH与AD共线,第201页\n即AD、BE、CF相交于一点H.图6例2如图6,已知在等腰△ABC中,BB′、CC′是两腰上的中线,且BB′⊥CC′,求顶角A的余弦值.活动:教师可引导学生思考探究,上例利用向量的几何法简捷地解决了平面几何问题.可否利用向量的坐标运算呢?这需要建立平面直角坐标系,找出所需点的坐标.如果能比较方便地建立起平面直角坐标系,如本例中图形,很方便建立平面直角坐标系,且图形中的各个点的坐标也容易写出,是否利用向量的坐标运算能更快捷地解决问题呢?教师引导学生建系、找点的坐标,然后让学生独立完成.解:建立如图6所示的平面直角坐标系,取A(0,a),C(c,0),则B(-c,0),=(0,a),=(c,a),=(c,0),=(2c,0).因为BB′、CC′都是中线,所以=(+)=[(2c,0)+(c,a)]=(),同理=().因为BB′⊥CC′,所以=0,a2=9c2.所以cosA=.点评:比较是最好的学习方法.本例利用的方法与例题1有所不同,但其本质是一致的,教学中引导学生仔细体会这一点,比较两例的异同,找出其内在的联系,以达融会贯通,灵活运用之功效.变式训练图7(2004湖北高考)如图7,在Rt△ABC中,已知BC=a.若长为2a的线段PQ以点A为中点,问:的夹角θ取何值时,的值最大?并求出这个最大值.解:方法一,如图7.∵⊥,∴·=0.第201页\n∵,∴==-a2-+·=-a2+·(-)=-a2+·=-a2+a2cosθ.故当cosθ=1,即θ=0,与的方向相同时,最大,其最大值为0.图8方法二:如图8.以直角顶点A为坐标原点,两直角边所在的直线为坐标轴,建立如图所示的平面直角坐标系.设|AB|=c,|AC|=b,则A(0,0),B(c,0),C(0,b),且|PQ|=2a,|BC|=a.设点P的坐标为(x,y),则Q(-x,-y).∴=(x-c,y),=(-x,-y-b),=(-c,b),=(-2x,-2y).∴=(x-c)(-x)+y(-y-b)=-(x2+y2)+cx-by.∵cosθ=∴cx-by=a2cosθ.∴=-a2+a2cosθ.故当cosθ=1,即θ=0,与的方向相同时,最大,其最大值为0.知能训练图91.如图9,已知AC为⊙O的一条直径,∠ABC是圆周角.第201页\n求证:∠ABC=90°.证明:如图9.设=a,=b,则=a+b,=a,=a-b,|a|=|b|.因为·=(a+b)·(a-b)=|a|2-|b|2=0,所以⊥.由此,得∠ABC=90°.点评:充分利用圆的特性,设出向量.2.D、E、F分别是△ABC的三条边AB、BC、CA上的动点,且它们在初始时刻分别从A、B、C出发,各以一定速度沿各边向B、C、A移动.当t=1时,分别到达B、C、A.求证:在0≤t≤1的任一时刻t1,△DEF的重心不变.图10证明:如图10.建立如图所示的平面直角坐标系,设A、B、C坐标分别为(0,0),(a,0),(m,n).在任一时刻t1∈(0,1),因速度一定,其距离之比等于时间之比,有=λ,由定比分点的坐标公式可得D、E、F的坐标分别为(at1,0),(a+(m-a)t1,nt1),(m-mt1,n-nt1).由重心坐标公式可得△DEF的重心坐标为().当t=0或t=1时,△ABC的重心也为(),故对任一t1∈[0,1],△DEF的重心不变.点评:主要考查定比分点公式及建立平面直角坐标系,只要证△ABC的重心和时刻t1的△DEF的重心相同即可.课堂小结1.由学生归纳总结本节学习的数学知识有哪些:平行四边形向量加、减法的几何模型,用向量方法解决平面几何问题的步骤,即“三步曲”.特别是这“三步曲”,要提醒学生理解领悟它的实质,达到熟练掌握的程度.2.本节都学习了哪些数学方法:向量法,向量法与几何法、解析法的比较,将平面几何问题转化为向量问题的化归的思想方法,深切体会向量的工具性这一特点.作业课本习题2.5A组2,B组3.设计感想1.本节是对研究平面几何方法的探究与归纳,设计的指导思想是:充分使用多媒体这个现代化手段,引导学生展开观察、归纳、猜想、论证等一系列思维活动.本节知识方法容量较大,思维含量较高,教师要把握好火候,恰时恰点地激发学生的智慧火花.2.由于本节知识方法在高考大题中得以直接的体现,特别是与其他知识的综合更是高考的热点问题.因此在实际授课时注意引导学生关注向量知识、向量方法与本书的三角、后续内容的解析几何等知识的交汇,提高学生综合解决问题的能力.第201页\n3.平面向量的运算包括向量的代数运算与几何运算.相比较而言,学生对向量的代数运算要容易接受一些,但对向量的几何运算往往感到比较困难,无从下手.向量的几何运算主要包括向量加减法的几何运算,向量平行与垂直的充要条件及定比分点的向量式等,它们在处理平面几何的有关问题时,往往有其独到之处,教师可让学有余力的学生课下继续探讨,以提高学生的思维发散能力.第201页\n2.5.2向量在物理中的应用举例整体设计教学分析向量与物理学天然相联.向量概念的原型就是物理中的力、速度、位以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰.并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题的认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究.用向量研究物理问题的相关知识.(1)力、速度、加速度、位移等既然都是向量,那么它们的合成与分解就是向量的加、减法,运动的叠加亦用到向量的合成;(2)动量是数乘向量;(3)功即是力与所产生位移的数量积.用向量知识研究物理问题的基本思路和方法.①通过抽象、概括,把物理现象转化为与之相关的向量问题;②认真分析物理现象,深刻把握物理量之间的相互关系;③利用向量知识解决这个向量问题,并获得这个向量的解;④利用这个结果,对原物理现象作出合理解释,即用向量知识圆满解决物理问题.教学中要善于引导学生通过对现实原型的观察、分析和比较,得出抽象的数学模型.例如,物理中力的合成与分解是向量的加法运算与向量分解的原型.同时,注重向量模型的运用,引导解决现实中的一些物理和几何问题.这样可以充分发挥现实原型对抽象的数学概念的支撑作用.三维目标1.通过力的合成与分解的物理模型,速度的合成与分解的物理模型,掌握利用向量方法研究物理中相关问题的步骤,明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识.2.通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力.体会数学在现实生活中的重要作用.养成善于发现生活中的数学,善于发现物理及其他科目中的数学及思考领悟各学科之间的内在联系的良好习惯.重点难点教学重点:1.运用向量的有关知识对物理中力的作用、速度的分解进行相关分析和计算.2.归纳利用向量方法解决物理问题的基本方法.教学难点:将物理中有关矢量的问题转化为数学中向量的问题.课时安排1课时教学过程导入新课思路1.(章头图引入)章头图中,道路、路标体现了向量与位移、速度、力等物理量之间的密切联系.章引言说明了向量的研究对象及研究方法.那么向量究竟是怎样应用于物理的呢?它就像章头图中的高速公路一样,是一条解决物理问题的高速公路.在学生渴望了解的企盼中,教师展示物理模型,由此展开新课.思路2.(问题引入)你能举出物理中的哪些向量?比如力、位移、速度、加速度等,既有大小又有方向,都是向量,学生很容易就举出来.进一步,你能举出应用向量来分析和解决物理问题的例子吗?你是怎样解决的?教师由此引导:向量是有广泛应用的数学工具,对向量在物理中的研究,有助于进一步加深对这方面问题的认识.我们可以通过对下面若干问题的研究,体会向量在物理中的重要作用.由此自然地引入新课.应用示例例1在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?活动:这个日常生活问题可以抽象为如图1所示的数学模型,引导学生由向量的平行四边形法则,力的平衡及解直角三角形等知识来思考探究这个数学问题.这样物理中力的现象就转化为数学中的向量问题.只要分析清楚F、G、θ三者之间的关系(其中F为F1、F2的合力),就得到了问题的数学解释.第201页\n图1在教学中要尽可能地采用多媒体,在信息技术的帮助下让学生来动态地观察|F|、|G|、θ之间在变化过程中所产生的相互影响.由学生独立完成本例后,与学生共同探究归纳出向量在物理中的应用的解题步骤,也可以由学生自己完成,还可以用信息技术来验证.用向量解决物理问题的一般步骤是:①问题的转化,即把物理问题转化为数学问题;②模型的建立,即建立以向量为主体的数学模型;③参数的获得,即求出数学模型的有关解——理论参数值;④问题的答案,即回到问题的初始状态,解释相关的物理现象.解:不妨设|F1|=|F2|,由向量的平行四边形法则、力的平衡以及直角三角形的知识,可以知道通过上面的式子,我们发现:当θ由0°到180°逐渐变大时,由0°到90°逐渐变大,cos的值由大逐渐变小,因此|F1|由小逐渐变大,即F1,F2之间的夹角越大越费力,夹角越小越省力.点评:本例是日常生活中经常遇到的问题,学生也会有两人共提一个旅行包以及在单杠上做引体向上运动的经验.本例的关键是作出简单的受力分析图,启发学生将物理现象转化成模型,从数学角度进行解释,这就是本例活动中所完成的事情.教学中要充分利用好这个模型,为解决其他物理问题打下基础.得到模型后就可以发现,这是一个很简单的向量问题,这也是向量工具优越性的具体体现.变式训练某人骑摩托车以20km/h的速度向西行驶,感到风从正南方向吹来,而当其速度变为40km/h时,他又感到风从西南方向吹来,求实际的风向和风速.图2解:如图2所示.设v1表示20km/h的速度,在无风时,此人感到的风速为-v1,实际的风速为v,那么此人所感到的风速为v+(-v1)=v-v1.令=-v1,=-2v1,实际风速为v.∵+=,∴=v-v1,这就是骑车人感受到的从正南方向吹来的风的速度.∵+=,∴=v-2v1,第201页\n这就是当车的速度为40km/h时,骑车人感受到的风速.由题意得∠DCA=45°,DB⊥AB,AB=BC,∴△DCA为等腰三角形,DA=DC,∠DAC=∠DCA=45°.∴DA=DC=BC=20.∴|v|=20km/h.答:实际的风速v的大小是202km/h,方向是东南方向.例2如图3所示,利用这个装置(冲击摆)可测定子弹的速度,设有一砂箱悬挂在两线下端,子弹击中砂箱后,陷入箱内,使砂箱摆至某一高度h.设子弹和砂箱的质量分别为m和M,求子弹的速度v的大小.图3解:设v0为子弹和砂箱相对静止后开始一起运动的速度,由于水平方向上动量守恒,所以m|v|=(M+m)|v0|.①由于机械能守恒,所以(M+m)v02=(M+m)gh.②联立①②解得|v|=又因为m相对于M很小,所以|v|≈,即子弹的速度大小约为.知能训练1.一艘船以4km/h的速度沿着与水流方向成120°的方向航行,已知河水流速为2km/h,则经过小时,该船实际航程为()A.2kmB.6kmC.kmD.8km图42.如图4,已知两个力的大小和方向,则合力的大小为N;若在图示坐标系中,用坐标表示合力F,则F=___________.3.一艘船以5km/h的速度向垂直于对岸的方向行驶,而该船实际航行的方向与水流方向成30°角,求水流速度与船的实际速度.解答:1.B点评:由于学生还没有学习正弦定理和余弦定理,所以要通过作高来求.第201页\n2.(5,4)图53.如图5所示,设表示水流速度,表示船垂直于对岸的速度,表示船的实际速度,∠AOC=30°,||=5km/h.因为OACB为矩形,所以||=||·cot30°=||·cot30°=53≈8.66km/h,||===10km/h.答:水流速度为8.66km/h,船的实际速度为10km/h.点评:转化为数学模型,画出向量图,在直角三角形中解出.课堂小结1.与学生共同归纳总结利用向量解决物理问题的步骤.①问题的转化,即把物理问题转化为数学问题;②模型的建立,即建立以向量为主体的数学模型;③参数的获得,即求出数学模型的有关解——理论参数值;④问题的答案,即回到问题的初始状态,解释相关的物理现象.2.与学生共同归纳总结向量在物理中应用的基本题型.①力、速度、加速度、位移都是向量;②力、速度、加速度、位移的合成与分解对应相应向量的加减;③)动量mv是数乘向量,冲量ΔtF也是数乘向量;④功是力F与位移s的数量积,即W=F·s.作业1.课本习题2.5A组3、4,B组1、2.2.归纳总结物理学中哪些地方可用向量.设计感想1.本教案设计的指导思想是:由于本节重在解决两个问题,一是如何把物理问题转化成数学问题,也就是将物理量之间的关系抽象成数学模型;二是如何用建立起来的数学模型解释和回答相关的物理现象.因此本教案设计的重点也就放在怎样让学生探究解决这两个问题上.而把这个探究的重点又放在这两个中的第一个上,也就是引导学生认真分析物理现象、准确把握物理量之间的相互关系.通过抽象、概括,把物理现象转化为与之相关的向量问题,然后利用向量知识解决这个向量问题.2.经历是最好的老师.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决实际问题的方法就越恰当而简捷.教科书中对本节的两个例题的处理方法,都不是先给出解法,而是先进行分析,探索出解题思路,再给出解法,就足以说明这一点.3.突出数形结合的思想.教科书例题都是先画图进行分析的,本教案的设计中也突出了这一点.让学生在活动的时候就先想到画图,并在这个活动中,体会数形结合的应用,体会数学具有广泛的应用,体会向量这个工具的优越性.第201页\n第三章三角恒等变换本章教材分析本章知识框图本章学习的主要内容是两角和与差的正弦、余弦和正切公式,以及运用这些公式进行简单的恒等变换.变换是数学的重要工具,也是数学学习的主要对象之一.在本册第一章,学生接触了同角三角函数公式.在本章,学生将运用向量方法推导两角差的余弦公式,由此出发导出其他的三角变换公式,并运用这些公式进行简单的三角恒等变换.三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,并体会三角恒等变换的工具性作用,学会它们在数学中的一些应用.本章内容安排按两条线进行,一条明线是建立公式,学习变换;一条暗线就是发展推理能力和运算能力,并且发展能力的要求不仅仅体现在学习变换过程之中,也体现在建立公式的过程之中.因此在本章教学中,教师要特别注意恰时恰点地提出问题,引导学生用对比、联系、化归的观点去分析、处理问题,使学生能依据三角函数式的特点,逐渐明确三角函数恒等变换不仅包括式子的结构形式变换,还包括式子中角的变换,以及不同三角函数之间的变换,强化运用数学思想方法指导设计变换思路的意识.突出数学思想方法的教学,在类比、推广、特殊化等一般逻辑思考方法上进行引导,本章不仅关注使学生得到和(差)角公式,而且还特别关注公式推导过程中体现的数学思想方法.例如,在两角差的余弦公式这一关键性问题的解决中体现了数形结合思想以及向量方法的应用;从两角差的余弦公式推出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,在这个过程中,始终引导学生体会化归思想;在应用公式进行恒等变换的过程中,渗透了观察、类比、推广、特殊化、化归等思想方法,特别是充分发挥了“观察”“思考”“探究”等栏目的作用,对学生解决问题的一般思路进行引导,这对学生养成科学的数学思考习惯能起到积极的促进作用.另外,还在适当的时候对三角变换中的数学思想方法作了明确的总结.例如,在旁白中有“倍是描述两个数量之间关系的,2α是α的二倍,4α是2α的二倍,这里蕴含着换元的思想”等,都是为了加强思想方法而设置的.两角和与差的正弦、余弦、正切公式和二倍角公式是历届高考考查的“重点”和“热点”,在高考中占有重要的地位,主要考查对这十一个公式的正用、逆用、变形用,考查对公式的熟练掌握程度和灵活运用能力,其考查难度属低档,这就要求我们不要过分引导学生去挖掘一些特殊的变化技巧,应把主要精力放在学生掌握数学规律和通性通法上.教师在教学中,要注意控制好难度.因为近几年的高考中对三角部分的考查难度降低,但教材中部分习题却有一定难度,因此教师要把握好难度.本章教学时间约需8课时,具体分配如下(仅供参考):节次标题课时3.1.1两角差的余弦公式1课时3.1.2两角和与差的正弦、余弦、正切公式2课时3.1.3二倍角的正弦、余弦、正切公式1课时3.2简单的三角恒等变换2课时本章复习2课时第201页\n3.1两角和与差的正弦、余弦和正切公式3.1.1两角差的余弦公式整体设计教学分析本节是以一个实际问题做引子,目的在于从中提出问题,引入本章的研究课题.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:①实际问题中存在研究像tan(45°+α)这样的包含两个角的三角函数的需要;②实际问题中存在研究像sinα与tan(45°+α)这样的包含两角和的三角函数与α、45°单角的三角函数的关系的需要.以实例引入课题也有利于体现数学与实际问题的联系,增强学生的应用意识,激发学生学习的积极性,同时也让学生体会数学知识产生、发展的过程.本节首先引导学生对cos(α-β)的结果进行探究,让学生充分发挥想象力,进行猜想,给出所有可能的结果,然后再去验证其真假.这也展示了数学知识的发生、发展的具体过程,最后提出了两种推导证明“两角差的余弦公式”的方案.方案一,利用单位圆上的三角函数线进行探索、推导,让学生动手画图,构造出α-β角,利用学过的三角函数知识探索存在一定的难度,教师要作恰当的引导.方案二,利用向量知识探索两角差的余弦公式时,要注意推导的层次性:①在回顾求角的余弦有哪些方法时,联系向量知识,体会向量方法的作用;②结合有关图形,完成运用向量方法推导公式的必要准备;③探索过程不应追求一步到位,应先不去理会其中的细节,抓住主要问题及其线索进行探索,然后再反思,予以完善;④补充完善的过程,既要运用分类讨论的思想,又要用到诱导公式.本节是数学公式的教学,教师要遵循公式教学的规律,应注意以下几方面:①要使学生了解公式的由来;②使学生认识公式的结构特征,加以记忆;③使学生掌握公式的推导和证明;④通过例子使学生熟悉公式的应用,灵活运用公式进行解答有关问题.三维目标1.通过让学生探索、猜想、发现并推导“两角差的余弦公式”,了解单角与复角的三角函数之间的内在联系,并通过强化题目的训练,加深对两角差的余弦公式的理解,培养学生的运算能力及逻辑推理能力,提高学生的数学素质.2.通过两角差的余弦公式的运用,会进行简单的求值、化简、证明,体会化归思想在数学当中的运用,使学生进一步掌握联系的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节的学习,使学生体会探究的乐趣,认识到世间万物的联系与转化,养成用辩证与联系的观点看问题.创设问题情境,激发学生分析、探求的学习态度,强化学生的参与意识,从而培养学生分析问题、解决问题的能力和代换、演绎、数形结合等数学思想方法.重点难点教学重点:通过探究得到两角差的余弦公式.教学难点:探索过程的组织和适当引导.课时安排1课时教学过程导入新课思路1.(问题导入)播放多媒体,出示问题,让学生认真阅读课本引例.在用方程的思想分析题意,用解直角三角形的知识布列方程的过程中,提出了两个问题:①实际问题中存在研究像tan(45°+α)这样的包含两个角的三角函数的需要;②实际问题中存在研究像sinα与tan(45°+α)这样的包含两角和的三角函数与α、45°单角的三角函数的关系的需要.在此基础上,再一般化而提出本节的研究课题进入新课.思路2.(复习导入)我们在初中时就知道cos45°=,cos30°=第201页\n,由此我们能否得到cos15°=cos(45°-30°)=?这里是不是等于cos45°-cos30°呢?教师可让学生验证,经过验证可知,我们的猜想是错误的.那么究竟是个什么关系呢?cos(α-β)等于什么呢?这时学生急于知道答案,由此展开新课:我们就一起来探讨“两角差的余弦公式”.这是全章公式的基础.推进新课新知探究提出问题①请学生猜想cos(α-β)=?②利用前面学过的单位圆上的三角函数线,如何用α、β的三角函数来表示cos(α-β)呢?③利用向量的知识,又能如何推导发现cos(α-β)=?④细心观察C(α-β)公式的结构,它有哪些特征?其中α、β角的取值范围如何?⑤如何正用、逆用、灵活运用C(α-β)公式进行求值计算?活动:问题①,出示问题后,教师让学生充分发挥想象能力尝试一下,大胆猜想,有的同学可能就首先想到cos(α-β)=cosα-cosβ的结论,此时教师适当的点拨,然后让学生由特殊角来验证它的正确性.如α=60°,β=30°,则cos(α-β)=cos30°=,而cosα-cosβ=cos60°-cos30°=,这一反例足以说明cos(α-β)≠cosα-cosβ.让学生明白,要想说明猜想正确,需进行严格证明,而要想说明猜想错误,只需一个反例即可.问题②,既然cos(α-β)≠cosα-cosβ,那么cos(α-β)究竟等于什么呢?由于这里涉及的是三角函数的问题,是α-β这个角的余弦问题,我们能否利用单位圆上的三角函数线来探究呢?图1如图1,设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM垂直于x轴,垂足为M,那么OM就是角α-β的余弦线,即OM=cos(α-β),这里就是要用角α、β的正弦线、余弦线来表示OM.过点P作PA垂直于OP1,垂足为A,过点A作AB垂直于x轴,垂足为B,过点P作PC垂直于AB,垂足为C.那么,OA表示cosβ,AP表示sinβ,并且∠PAC=∠P1Ox=α.于是,OM=OB+BM=OB+CP=OAcosa+APsina=cosβcosα+sinβsinα,所以,cos(α-β)=cosαcosβ+sinαsinβ.教师引导学生进一步思考,以上的推理过程中,角α、β、α-β是有条件限制的,即α、β、α-β均为锐角,且α>β,如果要说明此结果是否对任意角α、β都成立,还要做不少推广工作,并且这项推广工作的过程比较繁琐,由同学们课后动手试一试.图2问题③,教师引导学生,可否利用刚学过的向量知识来探究这个问题呢?如图2,在平面直角坐标系xOy内作单位圆O,以Ox为始边作角α、β,它们的终边与单位圆O的交点分别为A、B,则=(cosα,sinα),=(cosβ,sinβ),∠AOB=α-β.由向量数量积的定义有·=||||·cos(α-β)=cos(α-β),第201页\n由向量数量积的坐标表示有·=(cosα,sinα)(cosβ,sinβ)=cosαcosβ+sinαsinβ,于是,cos(α-β)=cosαcosβ+sinαsinβ.我们发现,运用向量工具进行探究推导,过程相当简洁,但在向量数量积的概念中,角α-β必须符合条件0≤α-β≤π,以上结论才正确,由于α、β都是任意角,α-β也是任意角,因此就是研究当α-β是任意角时,以上公式是否正确的问题.当α-β是任意角时,由诱导公式,总可以找到一个角θ∈[0,2π),使cosθ=cos(α-β),若θ∈[0,π],则·=cosθ=cos(α-β).若θ∈[π,2π],则2π-θ∈[0,π],且·=cos(2π-θ)=cosθ=cos(α-β).由此可知,对于任意角α、β都有cos(α-β)=cosαcosβ+sinαsinβ(C(α-β))此公式给出了任意角α、β的正弦、余弦值与其差角α-β的余弦值之间的关系,称为差角的余弦公式,简记为C(α-β).有了公式C(α-β)以后,我们只要知道cosα、cosβ、sinα、sinβ的值,就可以求得cos(α-β)的值了.问题④,教师引导学生细心观察公式C(α-β)的结构特征,让学生自己发现公式左边是“两角差的余弦”,右边是“这两角的余弦积与正弦积的和”,可让学生结合推导过程及结构特征进行记忆,特别是运算符号,左“-”右“+”.或让学生进行简单填空,如:cos(A-B)=__________,cos(θ-φ)=__________等.因此,只要知道了sinα、cosα、sinβ、cosβ的值就可以求得cos(α-β)的值了.问题⑤,对于公式的正用是比较容易的,关键在于“拆角”的技巧,而公式的逆用则需要学生的逆向思维的灵活性,特别是变形应用,这就需要学生具有较强的观察能力和熟练的运算技巧.如cos75°cos45°+sin75°sin45°=cos(75°-45°)=cos30°=,cosα=cos[(α+β)-β]=cos(α+β)cosβ+sin(α+β)sinβ.讨论结果:①—⑤略.应用示例思路1例1利用差角余弦公式求cos15°的值.活动:先让学生自己探究,对有困难的学生教师可点拨学生思考题目中的角15°,它可以拆分为哪些特殊角的差,如15°=45°-30°或者15°=60°-45°,从而就可以直接套用公式C(α-β)计算求值.教师不要包办,充分让学生自己独立完成,在学生的具体操作下,体会公式的结构,公式的用法以及把未知转化为已知的数学思想方法.对于很快就完成的同学,教师鼓励其换个角度继续探究.解:方法一:cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=方法二:cos15°=cos(60°-45°)=cos60°cos45°+sin60°sin45°=×点评:本题是指定方法求cos15°的值,属于套用公式型的,这样可以使学生把注意力集中到使用公式求值上.但是仍然需要学生将这个非特殊角拆分成两个特殊角的差的形式,灵活运用公式求值.本例也说明了差角余弦公式也适用于形式上不是差角,但可以拆分成两角差的情形.至于如何拆分,让学生在应用中仔细体会.变式训练1.不查表求sin75°,sin15°的值.解:sin75°=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°第201页\n=sin15°===点评:本题是例题的变式,比例题有一定的难度,但学生只要细心分析,利用相关的诱导公式,不难得到上面的解答方法.2.不查表求值:cos110°cos20°+sin110°sin20°.解:原式=cos(110°-20°)=cos90°=0.点评:此题学生一看就有似曾相识而又无从下手的感觉,需要教师加以引导,让学生细心观察,再结合公式C(α-β)的右边的特征,逆用公式便可得到cos(110°-20°).这就是公式逆用的典例,从而培养了学生思维的灵活性.例2已知sinα=,α∈(,π),cosβ=,β是第三象限角,求cos(α-β)的值.活动:教师引导学生观察题目的结构特征,联想到刚刚推导的余弦公式,学生不难发现,欲求cos(α-β)的值,必先知道sinα、cosα、sinβ、cosβ的值,然后利用公式C(α-β)即可求解.从已知条件看,还少cosα与sinβ的值,根据诱导公式不难求出,但是这里必须让学生注意利用同角的平方和关系式时,角α、β所在的象限,准确判断它们的三角函数值的符号.本例可由学生自己独立完成.解:由sinα=,α∈(,π),得cosα=又由cosβ=,β是第三象限角,得sinβ=所以cos(α-β)=cosαcosβ+sinαsinβ=点评:本题是直接运用公式C(α-β)求值的基础练习,但必须思考使用公式前应作出的必要准备.特别是运用同角三角函数平方关系式求值时,一定要弄清角的范围,准确判断三角函数值的符号.教师可提醒学生注意这点,养成良好的学习习惯.变式训练已知sinα=,α∈(0,π),cosβ=,β是第三象限角,求cos(α-β)的值.解:①当α∈[,π)时,且sinα=,得cosα=,又由cosβ=,β是第三象限角,得sinβ==.所以cos(α-β)=cosαcosβ+sinαsinβ第201页\n=.②当α∈(0,)时,且sinα=,得cosα=,又由cosβ=,β是第三象限角,得sinβ=所以cos(α-β)=cosαcosβ+sinαsinβ=点评:本题与例2的显著的不同点就是角α的范围不同.由于α∈(0,π),这样cosα的符号可正、可负,需讨论,教师引导学生运用分类讨论的思想,对角α进行分类讨论,从而培养学生思维的严密性和逻辑的条理性.教师强调分类时要不重不漏.思路2例1计算:(1)cos(-15°);(2)cos15°cos105°+sin15°sin105°;(3)sinxsin(x+y)+cosxcos(x+y).活动:教师可以大胆放给学生自己探究,点拨学生分析题目中的角-15°,思考它可以拆分为哪些特殊角的差,如-15°=15°-30°或-15°=45°-60°,然后套用公式求值即可.也可化cos(-15°)=cos15°再求值.让学生细心观察(2)(3)可知,其形式与公式C(α-β)的右边一致,从而化为特殊角的余弦函数.解:(1)原式=cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=(2)原式=cos(15°-105°)=cos(-90°)=cos90°=0.(3)原式=cos[x-(x+y)]=cos(-y)=cosy.点评:本例重点是训练学生灵活运用两角差的余弦公式进行计算求值,从不同角度培养学生正用、逆用、变形用公式解决问题的能力,为后面公式的学习打下牢固的基础.例2已知cosα=,cos(α+β)=,且α、β∈(0,),求cosβ的值.活动:教师引导学生观察题目中的条件与所求,让学生探究α、α+β、β之间的关系,也就是寻找已知条件中的角与所求角的关系.学生通过探究、讨论不难得到β=(α+β)-α的关系式,然后利用公式C(α-β)求值即可.但还应提醒学生注意由α、β的取值范围求出α+β的取值范围,这是很关键的一点,从而判断sin(α+β)的符号进而求出cosβ.解:∵α、β∈(0,),∴α+β∈(0,π).又∵cosα=,cos(α+β)=,∴sinα=第201页\nsin(α+β)=又∵β=(α+β)-α,∴cosβ=cos(α+β)cosα+sin(α+β)sinα=点评:本题相对于例1难度大有提高,但是只要引导适当,学生不难得到β=(α+β)-α的关系式,继而运用公式解决.但值得注意的是α+β的取值范围确定,也是很关键的,这是我们以后解题当中常见的问题.变式训练1.求值:cos15°+sin15°.解:原式=cos15°+sin15°)=(cos45°cos15°+sin45°sin15°)=cos(45°-15°)=cos30°=.2.已知sinα+sinβ=,cosα+cosβ=,求cos(α-β)的值.解:∵(sinα+sinβ)2=()2,(cosα+cosβ)2=()2,以上两式展开两边分别相加得2+2cos(α-β)=1,∴cos(α-β)=.点评:本题又是公式C(α-β)的典型应用,解决问题的关键就是将已知中的两个和式两边平方,从而得到公式C(α-β)中cosαcosβ和sinαsinβ的值,即可求得cos(α-β)的值,本题培养了学生综合运用三角函数公式解决问题的能力.3.已知锐角α、β满足cosα=,tan(α-β)=,求cosβ.解:∵α为锐角,且cosα=,得sinα=.又∵0<α<,0<β<,∴-<α-β<.又∵tan(α-β)=<0,∴cos(α-β)=.从而sin(α-β)=tan(α-β)cos(α-β)=.∴cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)第201页\n=×=.知能训练课本本节练习.解答:1.(1)cos(-α)=coscosα+sinsinα=sinα.(2)cos(2π-α)=cos2πcosα+sin2πsinα=cosα.2..3.4..课堂小结1.先由学生自己思考、回顾公式的推导过程,观察公式的特征,特别要注意公式既可正用、逆用,还可变用及掌握变角和拆角的思想方法解决问题.然后教师引导学生围绕以下知识点小结:(1)怎么联系有关知识进行新知识的探究?(2)利用差角余弦公式方面:对公式结构和功能的认识;三角变换的特点.2.教师画龙点睛:本节课要理解并掌握两角差的余弦公式及其推导,要正确熟练地运用公式进行解题,在解题时要注意分析三角函数名称、角的关系,准确判断三角函数值的符号.多对题目进行一题多解,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.作业课本习题3.1A组2、3、4、5.设计感想1.本节课是典型的公式教学模式,因此本节课的设计流程为“实际问题→猜想→探索推导→记忆→应用”.它充分展示了公式教学中以学生为主体,进行主动探索数学知识发生、发展的过程.同时充分发挥教师的主导作用,引导学生利用旧知识推导、证明新知识,并学会记忆公式的方法,灵活运用公式解决实际问题,从而培养学生独立探索数学知识的能力,增强学生的应用意识,激发学生学习的积极性.2.纵观本教案的设计,学生发现推导出公式C(α-β)后就是应用,同时如何训练公式的正用、逆用、变形用也是本节的重点难点.而学生从探究活动过程中学会了怎样去发现数学规律,又发现了怎样逆用公式及活用公式,那才是深层的,那才是我们中学数学教育的最终目的.3.教学矛盾的主要方面是学生的学,学是中心,会学是目的,根据高中三角函数的推理特点,本节主要是教给学生“研究问题、猜想探索公式、验证特殊情形、推导公式、学习应用”的探索创新式学习方法.这样做增强了学生的参与意识,教给了学生发现规律、探索推导,获取新知的途径,让学生真正尝到探索的喜悦,真正成为教学的主体.学生体会到数学的美,产生一种成功感,从而提高了学习数学的兴趣.第201页\n3.1.2两角和与差的正弦、余弦、正切公式整体设计教学分析1.两角和与差的正弦、余弦、正切公式是在研究了两角差的余弦公式的基础上,进一步研究具有“两角和差”关系的正弦、余弦、正切公式的.在这些公式的推导中,教科书都把对照、比较有关的三角函数式,认清其区别,寻找其联系和联系的途径作为思维的起点,如比较cos(α-β)与cos(α+β),它们都是角的余弦只是角形式不同,但不同角的形式从运算或换元的角度看都有内在联系,即α+β=α-(-β)的关系,从而由公式C(α-β)推得公式C(α+β),又如比较sin(α-β)与cos(α-β),它们包含的角相同但函数名称不同,这就要求进行函数名的互化,利用诱导公式(5)(6)即可推得公式S(α-β)、S(α+β)等.2.通过对“两角和与差的正弦、余弦、正切公式”的推导,揭示了两角和、差的三角函数与这两角的三角函数的运算规律,还使学生加深了数学公式的推导、证明方法的理解.因此本节内容也是培养学生运算能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力,发现问题和解决问题的能力都有着十分重要的意义.3.本节的几个公式是相互联系的,其推导过程也充分说明了它们之间的内在联系,让学生深刻领会它们的这种联系,从而加深对公式的理解和记忆.本节几个例子主要目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯,教学中应当有意识地对学生的思维习惯进行引导,例如在面对问题时,要注意先认真分析条件,明确要求,再思考应该联系什么公式,使用公式时要具备什么条件等.另外,还要重视思维过程的表述,不能只看最后结果而不顾过程表述的正确性、简捷性等,这些都是培养学生三角恒等变换能力所不能忽视的.三维目标1.在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.2.通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.重点难点教学重点:两角和与差的正弦、余弦、正切公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.课时安排2课时教学过程第1课时导入新课思路1.(旧知导入)教师先让学生回顾上节课所推导的两角差的余弦公式,并把公式默写在黑板上或打出幻灯片,注意有意识地让学生写整齐.然后教师引导学生观察cos(α-β)与cos(α+β)、sin(α-β)的内在联系,进行由旧知推出新知的转化过程,从而推导出C(α+β)、S(α-β)、S(α+β).本节课我们共同研究公式的推导及其应用.思路2.(问题导入)教师出示问题,先让学生计算以下几个题目,既可以复习回顾上节所学公式,又为本节新课作准备.若sinα=,α∈(0,),cosβ=,β∈(0,),求cos(α-β),cos(α+β)的值.学生利用公式C(α-β)很容易求得cos(α-β),但是如果求cos(α+β)的值就得想法转化为公式C(α-β)的形式来求,此时思路受阻,从而引出新课题,并由此展开联想探究其他公式.推进新课第201页\n新知探究提出问题①还记得两角差的余弦公式吗?请一位同学到黑板上默写出来.②在公式C(α-β)中,角β是任意角,请学生思考角α-β中β换成角-β是否可以?此时观察角α+β与α-(-β)之间的联系,如何利用公式C(α-β)来推导cos(α+β)=?③分析观察C(α+β)的结构有何特征?④在公式C(α-β)、C(α+β)的基础上能否推导sin(α+β)=?sin(α-β)=?⑤公式S(α-β)、S(α+β)的结构特征如何?⑥对比分析公式C(α-β)、C(α+β)、S(α-β)、S(α+β),能否推导出tan(α-β)=?tan(α+β)=?⑦分析观察公式T(α-β)、T(α+β)的结构特征如何?⑧思考如何灵活运用公式解题?活动:对问题①,学生默写完后,教师打出课件,然后引导学生观察两角差的余弦公式,点拨学生思考公式中的α,β既然可以是任意角,是怎样任意的?你会有些什么样的奇妙想法呢?鼓励学生大胆猜想,引导学生比较cos(α-β)与cos(α+β)中角的内在联系,学生有的会发现α-β中的角β可以变为角-β,所以α-(-β)=α+β〔也有的会根据加减运算关系直接把和角α+β化成差角α-(-β)的形式〕.这时教师适时引导学生转移到公式C(α-β)上来,这样就很自然地得到cos(α+β)=cos[α-(-β)]=cosαcos(-β)+sinαsin(-β)=cosαcosβ-sinαsinβ.所以有如下公式:cos(α+β)=cosαcosβ-sinαsinβ我们称以上等式为两角和的余弦公式,记作C(α+β).对问题②,教师引导学生细心观察公式C(α+β)的结构特征,可知“两角和的余弦,等于这两角的余弦积减去这两角的正弦积”,同时让学生对比公式C(α-β)进行记忆,并填空:cos75°=cos(_________)==__________=___________.对问题③,上面学生推得了两角和与差的余弦公式,教师引导学生观察思考,怎样才能得到两角和与差的正弦公式呢?我们利用什么公式来实现正、余弦的互化呢?学生可能有的想到利用诱导公式⑸⑹来化余弦为正弦(也有的想到利用同角的平方和关系式sin2α+cos2α=1来互化,此法让学生课下进行),因此有sin(α+β)=cos[-(α+β)]=cos[(-α)-β]=cos(-α)cosβ+sin(-α)sinβ=sinαcosβ+cosαsinβ.在上述公式中,β用-β代之,则sin(α-β)=sin[α+(-β)]=sinαcos(-β)+cosαsin(-β)=sinαcosβ-cosαsinβ.因此我们得到两角和与差的正弦公式,分别简记为S(α+β)、S(α-β).sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.对问题④⑤,教师恰时恰点地引导学生观察公式的结构特征并结合推导过程进行记忆,同时进一步体会本节公式的探究过程及公式变化特点,体验三角公式的这种简洁美、对称美.为强化记忆,教师可让学生填空,如sin(θ+φ)=___________,sin=__________.对问题⑥,教师引导学生思考,在我们推出了公式C(α-β)、C(α+β)、S(α+β)、S(α-β)第201页\n后,自然想到两角和与差的正切公式,怎么样来推导出tan(α-β)=?,tan(α+β)=?呢?学生很容易想到利用同角三角函数关系式,化弦为切得到.在学生探究推导时很可能想不到讨论,这时教师不要直接提醒,让学生自己悟出来.当cos(α+β)≠0时,tan(α+β)=如果cosαcosβ≠0,即cosα≠0且cosβ≠0时,分子、分母同除以cosαcosβ得tan(α+β)=,据角α、β的任意性,在上面的式子中,β用-β代之,则有tan(α-β)=由此推得两角和、差的正切公式,简记为T(α-β)、T(α+β).tan(α+β)=tan(α-β)=对问题⑥,让学生自己联想思考,两角和与差的正切公式中α、β、α±β的取值是任意的吗?学生回顾自己的公式探究过程可知,α、β、α±β都不能等于+kπ(k∈Z),并引导学生分析公式结构特征,加深公式记忆.对问题⑦⑧,教师与学生一起归类总结,我们把前面六个公式分类比较可得C(α+β)、S(α+β)、T(α+β)叫和角公式;S(α-β)、C(α-β)、T(α-β)叫差角公式.并由学生归纳总结以上六个公式的推导过程,从而得出以下逻辑联系图.可让学生自己画出这六个框图.通过逻辑联系图,深刻理解它们之间的内在联系,借以理解并灵活运用这些公式.同时教师应提醒学生注意:不仅要掌握这些公式的正用,还要注意它们的逆用及变形用.如两角和与差的正切公式的变形式tanα+tanβ=tan(α+β)(1-tanαtanβ),tanα-tanβ=tan(α-β)(1+tanαtanβ),在化简求值中就经常应用到,使解题过程大大简化,也体现了数学的简洁美.对于两角和与差的正切公式,当tanα,tanβ或tan(α±β)的值不存在时,不能使用T(α±β)处理某些有关问题,但可改用诱导公式或其他方法,例如:化简tan(-β),因为tan的值不存在,所以改用诱导公式tan(-β)=来处理等.应用示例思路1例1已知sinα=,α是第四象限角,求sin(-α),cos(+α),tan(-α)的值.活动:第201页\n教师引导学生分析题目中角的关系,在面对问题时要注意认真分析条件,明确要求.再思考应该联系什么公式,使用公式时要有什么准备,准备工作怎么进行等.例如本题中,要先求出cosα,tanα的值,才能利用公式得解,本题是直接应用公式解题,目的是为了让学生初步熟悉公式的应用,教师可以完全让学生自己独立完成.解:由sinα=,α是第四象限角,得cosα=.∴tanα==.于是有sin(-α)=sincosα-cossinα=cos(+α)=coscosα-sinsinα=tan(α-)===.点评:本例是运用和差角公式的基础题,安排这个例题的目的是为了训练学生思维的有序性,逐步培养他们良好的思维习惯.变式训练1.不查表求cos75°,tan105°的值.解:cos75°=cos(45°+30°)=cos45°cos30°-sin45°sin30°=,tan105°=tan(60°+45°)==-(2+).2.设α∈(0,),若sinα=,则2sin(α+)等于()A.B.C.D.4答案:A例2已知sinα=,α∈(,π),cosβ=,β∈(π,).求sin(α-β),cos(α+β),tan(α+β).活动:教师可先让学生自己探究解决,对探究困难的学生教师给以适当的点拨,指导学生认真分析题目中已知条件和所求值的内在联系.根据公式S(α-β)、C(α+β)、T(α+β)应先求出cosα、sinβ、tanα、tanβ的值,然后利用公式求值,但要注意解题中三角函数值的符号.解:由sinα=,α∈(,π),得cosα==-=,∴tanα=.又由cosβ=,β∈(π,).第201页\nsinβ==,∴tanβ=.∴sin(α-β)=sinαcosβ-cosαsinβ=×()-(.∴cos(α+β)=cosαcosβ-sinαsinβ=()×()-×()=∴tan(α+β)==.点评:本题仍是直接利用公式计算求值的基础题,其目的还是让学生熟练掌握公式的应用,训练学生的运算能力.变式训练引导学生看章头图,利用本节所学公式解答课本章头题,加强学生的应用意识.解:设电视发射塔高CD=x米,∠CAB=α,则sinα=,在Rt△ABD中,tan(45°+α)=tanα.于是x=,又∵sinα=,α∈(0,),∴cosα≈,tanα≈.tan(45°+α)==3,∴x=-30=150(米).答:这座电视发射塔的高度约为150米.例3在△ABC中,sinA=(0°90°,∴90°>A>90°-B>0°.∴tanA>tan(90°-B)=cotB>0,∴tanA·tanB>1.∴S<1.思路2例1证明=tan(+).活动:教师引导学生思考,对于三角恒等式的证明,可从三个角度进行推导:①左边→右边;②右边→左边;③左边→中间条件←右边.教师可以鼓励学生试着多角度的化简推导.注意式子左边包含的角为x,三角函数的种类为正弦,余弦,右边是半角,三角函数的种类为正切.解:方法一:从右边入手,切化弦,得tan(+)=,由左右两边的角之间的关系,想到分子分母同乘以cos+sin,得方法二:从左边入手,分子分母运用二倍角公式的变形,降倍升幂,得由两边三角函数的种类差异,想到弦化切,即分子分母同除以cos,得=tan(+).第201页\n点评:本题考查的是半角公式的灵活运用,以及恒等式的证明所要注意的步骤与方法.变式训练已知α,β∈(0,)且满足:3sin2α+2sin2β=1,3sin2α-2sin2β=0,求α+2β的值.解法一:3sin2α+2sin2β=13sin2α=1-2sin2β,即3sin2α=cos2β,①3sin2α-2sin2β=03sinαcosα=sin2β,②①2+②2:9sin4α+9sin2αcos2α=1,即9sin2α(sin2α+cos2α)=1,∴sin2α=.∵α∈(0,),∴sinα=.∴sin(α+2β)=sinαcos2β+cosαsin2β=sinα·3sin2α+cosα·3sinαcosα=3sinα(sin2α+cos2α)=3×=1.∵α,β∈(0,),∴α+2β∈(0,).∴α+2β=.解法二:3sin2α+2sin2β=1cos2β=1-2sin2β=3sin2α,3sin2α-2sin2β=0sin2β=sin2α=3sinαcosα,∴cos(α+2β)=cosαcos2β-sinαsin2β=cosα·3sin2α-sinα·3sinαcosα=0.∵α,β∈(0,),∴α+2β∈(0,).∴α+2β=.解法三:由已知3sin2α=cos2β,sin2α=sin2β,两式相除,得tanα=cot2β,∴tanα=tan(-2β).∵α∈(0,),∴tanα>0.∴tan(-2β)>0.又∵β∈(0,),∴<-2β<.结合tan(-2β)>0,得0<-2β<.∴由tanα=tan(-2β),得α=-2β,即α+2β=.例2求证:活动:证明三角恒等式,一般要遵循“由繁到简”的原则,另外“化弦为切”与“化切为弦”也是在三角式的变换中经常使用的方法.证明:证法一:左边===右边.∴原式成立.证法二:右边=1-第201页\n===左边.∴原式成立.点评:此题进一步训练学生三角恒等式的变形,灵活运用三角函数公式的能力以及逻辑推理能力.变式训练1.求证:.分析:运用比例的基本性质,可以发现原式等价于,此式右边就是tan2θ.证明:原等式等价于.而上式左边==tan2右边.∴上式成立,即原等式得证.2.已知sinβ=m·sin(2α+β),求证:tan(α+β)=tanα.分析:仔细观察已知式与所证式中的角,不要盲目展开,要有的放矢,看到已知式中的2α+β可化为结论式中的α+β与α的和,不妨将α+β作为一整体来处理.证明:由sinβ=msin(2α+β)sin[(α+β)-α]=msin[(α+β)+α]sin(α+β)cosα-cos(α+β)sinα=m0[sin(α+β)cosα+cos(α+β)sinα](1-m)·sin(α+β)cosα=(1+m)·cos(α+β)sinαtan(α+β)=tanα.知能训练1.若sinα=,α在第二象限,则tan的值为()A.5B.-5C.D.2.设5π<θ<6π,cos=α,则sin等于()A.B.C.D.3.已知sinθ=,3π<θ<,则tan_________________.解答:1.A2.D3.-3课堂小结1.先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2.教师画龙点睛总结:本节学习了公式的使用,换元法,方程思想,等价转化,三角恒等变形的基本手段.作业第201页\n课本习题3.2B组2.设计感想1.本节主要学习了怎样推导半角公式、积化和差、和差化积公式以及如何利用已有的公式进行简单的恒等变换.在解题过程中,应注意对三角式的结构进行分析,根据结构特点选择合适公式,进行公式变形.还要思考一题多解、一题多变,并体会其中的一些数学思想,如换元、方程思想,“1”的代换,逆用公式等.2.在近几年的高考中,对三角变换的考查仍以基本公式的应用为主,突出对求值的考查.特别是对平方关系及和角公式的考查应引起重视,其中遇到对符号的判断是经常出问题的地方,同时要注意结合诱导公式的应用,应用诱导公式时符号问题也是常出错的地方.考试大纲对本部分的具体要求是:用向量的数量积推导出两角差的余弦公式,体会向量方法的作用.从两角差的余弦公式进而推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系,能运用上述公式进行简单的恒等变换.第2课时导入新课思路1.(问题导入)三角化简、求值与证明中,往往会出现较多相异的角,我们可根据角与角之间的和差、倍半、互补、互余等关系,运用角的变换,沟通条件与结论中角的差异,使问题获得解决,如:α=(α+β)-β,2α=(α+β)+(α-β)=(+α)-(-α),+α=-(-α)等,你能总结出三角变换的哪些策略?由此探讨展开.思路2.(复习导入)前面已经学过如何把形如y=asinx+bcosx的函数转化为形如y=Asin(ωx+φ)的函数,本节主要研究函数y=asinx+bcosx的周期、最值等性质.三角函数和代数、几何知识联系密切,它是研究其他各类知识的重要工具.高考题中与三角函数有关的问题,大都以恒等变形为研究手段.三角变换是运算、化简、求值、证明过程中不可缺少的解题技巧,要学会创设条件灵活运用三角公式,掌握运算,化简的方法和技能.推进新课新知探究提出问题①三角函数y=sinx,y=cosx的周期,最大值和最小值是多少?②函数y=asinx+bcosx的变形与应用是怎样的?③三角变换在几何问题中有什么应用?活动:教师引导学生对前面已学习过的三角函数的图象与性质进行复习与回顾,我们知道正弦函数,余弦函数的图象都具有周期性、对称性、单调性等性质.而且正弦函数,余弦函数的周期都是2kπ(k∈Z且k≠0),最小正周期都是2π.三角函数的定义与变化时,会对其周期性产生一定的影响,例如,函数y=sinx的周期是2kπ(k∈Z且k≠0),且最小正周期是2π,函数y=sin2x的周期是kπ(k∈Z且k≠0),且最小正周期是π.正弦函数,余弦函数的最大值是1,最小值是-1,所以这两个函数的值域都是[-1,1].函数y=asinx+bcosx=(cosx),∵(φ,则有asinx+bcosx=(sinxcosφ+cosxsinφ)=sin(x+φ).因此,我们有如下结论:asinx+bcosx=sin(x+φ),其中tanφ=.在以后的学习中可以用此结论进行求几何中的最值问题或者角度问题.第201页\n我们知道角的概念起源于几何图形,从而使得三角函数与平面几何有着密切的内在联系.几何中的角度、长度、面积等几何问题,常需借助三角函数的变换来解决,通过三角变换来解决几何中的有关问题,是一种重要的数学方法.讨论结果:①y=sinx,y=cosx的周期是2kπ(k∈Z且k≠0),最小正周期都是2π;最大值都是1,最小值都是-1.②—③(略)见活动.应用示例思路1例1如图1,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=α,求当角α取何值时,矩形ABCD的面积最大?并求出这个最大面积.活动:要求当角α取何值时,矩形ABCD的面积S最大,先找出S与α之间的函数关系,再求函数的最值.找S与α之间的函数关系可以让学生自己解决,得到:S=AB·BC=(cosαsinα)sinα=sinαcosα-sin2α.求这种y=asin2x+bsinxcosx+ccos2x函数的最值,应先降幂,再利用公式化成Asin(ωx+φ)型的三角函数求最值.教师引导学生思考:要求当角α取何值时,矩形ABCD的面积S最大,可分两步进行:图1(1)找出S与α之间的函数关系;(2)由得出的函数关系,求S的最大值.解:在Rt△OBC中,BC=cosα,BC=sinα,在Rt△OAD中,=tan60°=,所以OA=DA=BC=sinα.所以AB=OB-OA=cosαsinα.设矩形ABCD的面积为S,则S=AB·BC=(cosαsinα)sinα=sinαcosαsin2α=sin2α+cos2α-=(sin2α+cos2α)-第201页\n=sin(2α+)-.由于0<α<,所以当2α+=,即α=时,S最大=-=.因此,当α=时,矩形ABCD的面积最大,最大面积为.点评:可以看到,通过三角变换,我们把形如y=asinx+bcosx的函数转化为形如y=Asin(ωx+φ)的函数,从而使问题得到简化.这个过程中蕴涵了化归思想.此题可引申即可以去掉“记∠COP=α”,结论改成“求矩形ABCD的最大面积”,这时,对自变量可多一种选择,如设AD=x,S=x(),尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点.变式训练(2007年高考辽宁卷,19)已知函数f(x)=sin(ωx+)+sin(ωx-)-2cos2,x∈R(其中ω>0).(1)求函数f(x)的值域;(2)若函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为,求函数y=f(x)的单调增区间.解:(1)f(x)=sinωx+cosωx+sinωx-cosωx-(cosωx+1)=2(sinωx-cosωx)-1=2sin(ωx-)-1.由-1≤sin(ωx-)≤1,得-3≤2sin(ωx-)-1≤1,可知函数f(x)的值域为[-3,1].(2)由题设条件及三角函数图象和性质,可知y=f(x)的周期为π,又由ω>0,得=π,即得ω=2.于是有f(x)=2sin(2x-)-1,再由2kπ-≤2x-≤2kπ+(k∈Z),解得kπ-≤x≤kπ+(k∈Z).所以y=f(x)的单调增区间为[kπ-,kπ+](k∈Z).点评:本题主要考查三角函数公式,三角函数图象和性质等基础知识,考查综合运用三角函数有关知识的能力.例1求函数y=sin4x+23sinxcosx-cos4x的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间.活动:教师引导学生利用公式解题,本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.先用二倍角公式把函数化成最简形式,然后再解决与此相关的问题.解:y=sin4x+2sinxcosx-cos4x=(sin2x+cos2x)(sin2x-cos2x)+sin2x第201页\n=sin2x-cos2x=2sin(2x-).故该函数的最小正周期是π;最小值是-2;在[0,π]上单调增区间是[0,],[,π].点评:本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.变式训练已知函数f(x)=cos4x-2sinxcosx-sin4x,(1)求f(x)的最小正周期;(2)若x∈[0,],求f(x)的最大、最小值.解:f(x)=cos4x-2sinxcosx-sin4x=(cos2x+sin2x)(cos2x-sin2x)-sin2x=cos2x-sin2x=cos(2x+),所以,f(x)的最小正周期T==π.(2)因为x∈[0,],所以2x+∈[,].当2x+=时,cos(2x+)取得最大值,当2x+=π时,cos(2x+)取得最小值-1.所以,在[0,]上的最大值为1,最小值为-.思路2例1已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R上的偶函数,其图象关于点M(,0)对称,且在区间[0,]上是单调函数,求φ和ω的值.活动:提醒学生在解此题时,对f(x)是偶函数这一条件的运用不在问题上,而在对“f(x)的图象关于M(,0)对称”这一条件的使用上,多数考生都存在一定问题.一般地:定义在R上的函数y=f(x)对定义域内任意x满足条件:f(x+a)=2b-f(a-x),则y=f(x)的图象关于点(a,b)对称,反之亦然.教师在这类问题的教学时要给予充分的提示与总结,多做些这种类型的变式训练.解:由f(x)是偶函数,得f(-x)=f(x),即sin(-ωx+φ)=sin(ωx+φ),所以-cosφsinωx=cosφsinωx对任意x都成立.又ω>0,所以,得cosφ=0.依题设0≤φ≤π,所以,解得φ=.由f(x)的图象关于点M对称,得f(-x)=-f(+x).取x=0,得f()=-f(),所以f()=0.∵f()=sin(+)=cos,∴cos=0.又ω>0,得=+kπ,k=0,1,2,….第201页\n∴ω=(2k+1),k=0,1,2,….当k=0时,ω=,f(x)=sin(x+)在[0,]上是减函数;当k=1时,ω=2,f(x)=sin(2x+)在[0,]上是减函数;当k≥2时,ω≥,f(x)=sin(ωx+)在[0,]上不是单调函数.所以,综合得ω=或ω=2.点评:本题是利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此题.变式训练已知如图2的Rt△ABC中,∠A=90°,a为斜边,∠B、∠C的内角平分线BD、CE的长分别为m、n,且a2=2mn.问:是否能在区间(π,2π]中找到角θ,恰使等式cosθ-sinθ=4(cos-cos)成立?若能,找出这样的角θ;若不能,请说明理由.解:在Rt△BAD中,=cos,在Rt△BAC中,=sinC,∴mcos=asinC.图2同理,ncos=asinB.∴mncoscos=a2sinBsinC.而a2=2mn,∴coscos=2sinBsinC=8sin·coscossin.∴sinsin=.积化和差,得4(cos-cos)=-1,若存在θ使等式cosθ-sinθ=4(cos-cos)成立,则cos(θ+)=-1,∴cos(θ+)=.而π<θ≤2π,∴<θ+≤.∴这样的θ不存在.点评:对于不确定的开放式问题,通常称之为存在性问题.处理这类问题的一般思路是先假设结论是肯定的,再进行演绎推理,若推证出现矛盾,即可否定假设;若推出合理结果,即假设成立.这个探索结论的过程可概括为假设——推证——定论.第201页\n例2已知tan(α-β)=,tanβ=,且α,β∈(0,π),求2α-β的值.解:∵2α-β=2(α-β)+β,tan(α-β)=,∴tan2(α-β)==.从而tan(2α-β)=tan[2(α-β)+β]==.又∵tanα=tan[(α-β)+β]==<1.且0<α<π,∴0<α<.∴0<2α<.又tanβ=<0,且β∈(0,π),∴<β<π,-π<-β<.∴-π<2α-β<0.∴2α-β=.点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,若α∈(0,π),则求cosα;若α∈(,),则求sinα等.变式训练若α,β为锐角,且3sin2α+2sin2β=1,3sin2α-2sin2β=0,求证:α+2β=.证明:已知两个等式可化为3sin2α=cos2β,①3sinαcosα=sin2β,②①÷②,得=,即cosαcos2β-sinαsin2β=0,∴cos(α+2β)=0.∵0<α<,0<β<,∴0<α+2β<.∴α+2β=.知能训练课本本节练习4.解答:4.(1)y=sin4x.最小正周期为,递增区间为[](k∈Z),最大值为;(2)y=cosx+2.最小正周期为2π,递增区间为[π+2kπ,2π+2kπ](k∈Z),最大值为3;第201页\n(3)y=2sin(4x+).最小正周期为,递增区间为[](k∈Z),最大值为2.课堂小结本节课主要研究了通过三角恒等变形,把形如y=asinx+bcosx的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出生活的数学和“活”的数学.作业课本复习参考题A组10、11、12.设计感想1.本节课主要是三角恒等变换的应用,通过三角恒等变形,把形如y=asinx+bcosx的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的.在教学中教师要强调:分析、研究三角函数的性质,是三角函数的重要内容.如果给出的三角函数的表达式较为复杂,我们必须先通过三角恒等变换,将三角函数的解析式变形化简,然后再根据化简后的三角函数,讨论其图象和性质.因此,三角恒等变换是求解三角函数问题的一个基本步骤.但需注意的是,在三角恒等变换过程中,由于消项、约分、合并等原因,函数的定义域往往会发生一些变化,从而导致变形化简后的三角函数与原三角函数不等价.因此,在对三角函数式进行三角恒等变换后,还要确定原三角函数的定义域,并在这个定义域内分析其性质.2.在三角恒等变化中,首先是掌握利用向量的数量积推导出两角差的余弦公式,并由此导出角和与差的正弦、余弦、正切公式,二倍角公式和积化差、和差化积及半角公式,以此作为基本训练.其次要搞清楚各公式之间的内在联系,自己画出知识结构图.第三就是在三角恒等变换中,要结合第一章的三角函数关系、诱导公式等基础知识,对三角知识有整体的把握.3.今后高考对三角变换的考查估计仍以考查求值为主.和、差、倍、半角的三角函数公式、同角关系的运用仍然是重点考查的地方,应该引起足够重视,特别是对角的范围的讨论,从而确定符号.另外,在三角形中的三角变换问题,以及平面向量为模型的三角变换问题将是高考的热点.对三角函数综合应用的考查,估计仍然以三角与数列、不等式、平面向量、解析几何、三角与解三角形的实际应用为主,题型主要是选择题、填空题,也可能以解答题形式出现,难度不会太大.应注意新情景立意下的三角综合应用也是考试的热点.第201页