• 170.50 KB
  • 2022-08-15 发布

高中数学 不等式课时复习教案03 教案

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第三教时不等式教材:算术平均数与几何平均数目的:要求学生掌握算术平均数与几何平均数的意义,并掌握“平均不等式”及其推导过程。过程:一、定理:如果,那么(当且仅当时取“=”)证明:1.指出定理适用范围:2.强调取“=”的条件二、定理:如果是正数,那么(当且仅当时取“=”)证明:∵∴即:当且仅当时注意:1.这个定理适用的范围:2.语言表述:两个正数的算术平均数不小于它们的几何平均数。三、推广:定理:如果,那么(当且仅当时取“=”)证明:∵∵∴上式≥0从而\n指出:这里∵就不能保证推论:如果,那么(当且仅当时取“=”)证明:四、关于“平均数”的概念1.如果则:叫做这n个正数的算术平均数叫做这n个正数的几何平均数2.点题:算术平均数与几何平均数3.基本不等式:≥这个结论最终可用数学归纳法,二项式定理证明(这里从略)语言表述:n个正数的算术平均数不小于它们的几何平均数。4.的几何解释:ABD’DCab以为直径作圆,在直径AB上取一点C,过C作弦DD’^AB则从而而半径五、例一已知为两两不相等的实数,求证:证:∵以上三式相加:\n∴六、小结:算术平均数、几何平均数的概念基本不等式(即平均不等式)七、补充:1.已知,分别求的范围(8,11)(3,6)(2,4)2.试比较与(作差>)3.求证:证:三式相加化简即得

相关文档