• 244.00 KB
  • 2022-08-15 发布

高中数学 不等式课时复习教案04 教案

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第四教时不等式教材:极值定理目的:要求学生在掌握平均不等式的基础上进而掌握极值定理,并学会初步应用。过程:一、复习:算术平均数与几何平均数定义,平均不等式二、若,设求证:加权平均;算术平均;几何平均;调和平均证:∵∴即:(俗称幂平均不等式)由平均不等式即:综上所述:例一、若求证证:由幂平均不等式:三、极值定理已知都是正数,求证:1°如果积是定值,那么当时和有最小值2°如果和是定值,那么当时积有最大值\n证:∵∴1°当(定值)时,∴∵上式当时取“=”∴当时有2°当(定值)时,∴∵上式当时取“=”∴当时有注意强调:1°最值的含义(“≥”取最小值,“≤”取最大值)2°用极值定理求最值的三个必要条件:一“正”、二“定”、三“相等”一、例题1.证明下列各题:⑴证:∵∴于是⑵若上题改成,结果将如何?解:∵于是从而⑶若则解:若则显然有若异号或一个为0则∴2.①求函数的最大值②求函数的最大值解:①∵∴∴当即时\n即时②∵∴∴∴当时3.若,则为何值时有最小值,最小值为几?解:∵∴∴=当且仅当即时一、小结:1.四大平均值之间的关系及其证明2.极值定理及三要素补充:下列函数中取何值时,函数取得最大值或最小值,最值是多少?1°时2°3°时

相关文档