- 155.00 KB
- 2022-08-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
《椭圆》导学椭圆是我们生活中常见的一种曲线,如汽车油罐的横截面、太阳系中九大行星及其卫星运动的轨道、部分彗星的轨道等等都是椭圆形。研究椭圆的方程及其几何性质,可以帮助我们解决一些实际问题。椭圆是解析几何的重要内容,是高考常考的知识点之一。知识要点梳理1、椭圆的定义:平面内与两个定点F1、F2的距离的和等于常数(大于│F1F2│)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。问题一:对于椭园的定义我们应理解哪些内容:(1)椭圆的定义是据椭圆常见、常用的作图方法而得到的,它反映了椭圆的本质属性,是建立标准方程和解决有关问题的根本依据,必须要深刻理解。建议初学的读者,利用课本中椭圆的画法,边画边体会、理解椭圆的定义。(2)在定义中要抓住关键字词:“两个定点”、“距离的和”、“常数”,弄清它们的确切含义。特别注意这个常数应大于两定点的距离(│F1F2│=2c),即2a>2c。当2a=2c时,点的轨迹是两定点确定的线段F1F2;当2a<2c时,点的轨迹不存在。(3)要注意利用椭圆的定义解题。与椭圆有关的一些问题,若根据题设条件,利用椭圆的定义来解,往往起到其它方法所不及的作用。2、如何联系椭圆的标准方程理解几何性质?请读者利用类比的方法,将椭圆的两种标准方程、图形、及几何性质列一张表,然后,思考表中哪些是相同的?哪些是不同的?为什么?再认真阅读下面的说明。对标准方程及几何性质的几点说明:(1)牢记参数关系:中最大。(2)在两种标准方程表示的椭圆的几何性质中,凡是与坐标无关的性质(椭圆本身固有的性质)都是相同的。如长轴、短轴的长,焦距,离心率,椭圆的形状、大小等都是相同的。凡是与坐标有关的性质(由于坐标系选取的不同而得到的特殊性质)都是不同的。如焦点的坐标,顶点的坐标,标准方程,准线方程,椭圆的位置等都是不同的。记忆时,将焦点在x轴上方程、坐标中的x换成y,y换成x即可。\n(2)标准方程中的常数a、b(a>b>0)决定了椭圆的形状和大小,是椭圆的定形条件,这是椭圆本身固有的性质,与坐标系的选取无关。(6)椭圆的顶点是它与对称轴的交点,所以必有两个顶点与焦点在同一条直线上。椭圆的中心、焦点、短轴的端点,过这三点构成一个直角三角形,且以c、b为直角边,a为斜边,这是a、b、c的一个几何意义。(7)两焦点的位置决定了椭圆在坐标系中的位置,是椭圆的定位条件,与坐标系的选取有关。当焦点在x轴上时,椭圆是“平卧”的;当焦点在y轴上时,椭圆是“直立”的。(8)椭圆的焦点一定在长轴上。观察两个标准方程,不难看出,当等号右边等于1时,若左边x2项的分母大于y2项的分母,则焦点在x轴上;若左边y2项的分母大于x2项的分母,则焦点在y轴上。即:焦点在x轴上标准方程中x2项的分母较大(是a2);焦点在y轴上标准方程中y2项的分母较大(是a2)。简记为:“以分母大小定长(轴)短(轴)”。(9)求椭圆的标准方程,常采用“先定位,后定量”的方法(待定系数法)。先定位,就是首先确定椭圆和坐标系的相对位置,以椭圆的中心为原点,看焦点在哪个坐标轴上,再确定标准方程的形式;后定量,就是根据已知条件,通过解方程(组)等手段,确定a、b的值,代入所设的方程,即可求出椭圆的标准方程。如若不能确定焦点的位置,则两种情况都要考虑,这一点一定要注意,不要遗漏,此时设所求的椭圆方程为一般形式:Ax2+By2=1(A>0,B>0,且A≠B)比较简单。(10)点P0(x0,y0)和椭圆的位置关系有:点P0(x0,y0)在椭圆上;点P0(x0,y0)在椭圆内;点P0(x0,y0)在椭圆外。椭圆的标准方程教学目标根据课程标准的要求,本节教材的特点及所教学生的认知情况,把教学目标拟定如下:\n(1)知识目标:进一步理解椭圆的定义:掌握椭圆的标准方程,理解椭圆标准方程的推导;会根据条件写出椭圆的标准方程;能用标准方程判定是否是椭圆.(2)能力目标:通过寻求椭圆的标准方程珠推导,帮助学生领会观察、分析、归纳、数形结合等思想方法的运用;在相互交流学习中,使学生养成表述、抽象、总结的思维习惯,逐步培养学生在探索新知的过程中进行合作推理的能力,及应用代数知识进行同解变形和化简的能力.(3)情感目标:在平等的教学氛围中,让学生体验数学学习的成功与快乐,增加学生的求知欲和自信心,培养学生不怕困难、勇于探索的优良作风,增强学习审美体验,提高学习的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度.重点、难点重点:如何确定椭圆的标准方程:难点:椭圆标准方程的推导:教学方法启发、探索、小组讨论等教学手段运用多媒体(计算机等)辅助教学教学过程(一)创设情景情景一:复习上节课内容,重点是椭圆的定义.上节课我们已经学习了椭圆,请大家回忆一下椭圆的定义,想一想我们是怎么画椭圆的?[平面内到两个定点的距离的和等于常数(大于)的点的轨迹叫做椭圆,两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距]情景二:展示图片一,思索:油罐的横截面而不是椭圆?情景三:展示图片二,思索:“鸟巢”顶部的椭圆型建筑如何设计?情景四:展示图片三,思索:“嫦娥奔月”中卫星如何精确定位?通过研究椭圆的方程,可以帮助我们回答这些问题.\n目的:利用课件生动形象的演示提高学习学习兴趣,激活学生思维,使学生的注意,记忆、思维凝聚在一起,加强学生对椭圆形象的认识,提高参与程度,让学生认识到学习椭圆的必要性,引出课题.(二)互动探究椭圆标准方程的推导问题1:联想必修2中圆方程的推导步骤是如何的?(建立坐标系,设点的坐标、列等式、代坐标、化简方程)问题2:怎样给椭圆建立直角坐标系?设椭圆的两个焦点分别为,它们之间的距离为,椭圆上任意一点到的距离的和为.通过几何画板来画一个椭圆,让学生思考根据所画的椭圆,选取适当的坐标系.☆结合建立坐标系的一般原则——使点的坐标、几何量的表达式简单化,并且从“对称美”、“简洁美”的角度出发作一定的点拨;若学生选取适当的坐标系都一样,教师多画几个坐标系,让学生选,注意要有中心在原点,焦点在轴的坐标系;并提问:为什么选取这样的坐标系,依据是什么.(1)建立直角坐标系:以所在直线为轴,线段的垂直平分线为轴,建立直角坐标系.(2)设点的坐标:设点是椭圆上任意一点,且椭圆的焦点坐标为,.(3)列等式:依据椭圆的定义有.(4)将坐标代入得到.目的:教学生学会建立适当的坐标系,构造数与形的桥梁,学会用解析的方法来解决问题,渗透数形结合的数学思想.\n☆这是一个比较复杂的根式变形,化简的关键在于将根式去掉,而去根式则要两边平方,那么怎样平方去根式会较简单呢?(5)化简:通过平移、两次平方后得到:,为使方程简单、对称、和谐,引入字母,令,可的椭圆的标准方程.先让学生尝试化简,然后教师指出含有根式的化简规则.☆总结含有根式的化简步骤:(1)方程中有一个根式时,需将根式单独留在方程的一边,把其他项移到方程的另一边,然后两边平方;(2)方程中有两个根式时,需将它们分别放在方程的两边,并使其中一边只有一项,再两边平方.(三)合作交流焦点在轴的椭圆方程该如何推导?通过几何画板的建系,再次让学生体会:“建立坐标系、设点的坐标、列等式、代坐标、化简方程”这个推导曲线方程的过程,并能在对比中猜想出标准方程,即焦点,,焦距为,椭圆的方程为(四)数学建构请同学们观察归纳两个方程的特征,从而区别焦点在不同坐标轴上的椭圆标准方程:令渗透数学对称美,简洁美教学.标准方程\n不同点图形焦点坐标,,相同点定义平面内到两个定点的距离的和等于常数(大于)的点的轨迹的关系焦点位置的判断分母哪个大,焦点就在哪个轴上强调:①是;②是;③是定方程“型”与曲线“形”.目的:通过对比总结,强化不同类型的方程的异同,从而深化学生对椭圆标准方程的理解;通过讨论,学生自主学习,构建新的知识体系,不但能学习到真正属于自己的、可灵活运用的知识,而且在此过程中掌握求知的方法;通过讨论,利用类比的方法来深化学生对椭圆标准方程的理解.(五)学生活动第一次数学练习:(1),则,,,焦点在轴上,焦点坐标为;(2),则,,,焦点在轴上,焦点坐标为;目的:通过本题的练习,使学生能加深椭圆的焦点位置与标准方程之间关系的理解,同时会求出焦点坐标、焦距等基本量(求前要将方程先化成标准式),教学时采用在教师引导下学生自主完成的方法.(六)数学应用\n例1:已知一个运油车上的贮油罐横截面的外轮廓线是一个椭圆,它的焦距为2.4m,外轮廓线上的点到两个焦点距离的和为3m,求这个椭圆的标准方程.解:以两焦点所在直线为轴,线段的垂直平分线为轴,建立如图所示的直角坐标系,则这个椭圆的标准方程可设为.根据题意知,,即,,所以,因此,这个椭圆的标准方程为.目的:(1)进一步熟悉椭圆的焦点位置与标准方程之间的关系;(2)掌握运用待定系数求椭圆的标准方程,解题时强调“二定”即定位定量;(3)培养学生运用知识解决问题的能力.(七)学生活动第二次练习:求适合下列条件的椭圆的标准方程:①,,焦点在轴上;②,,焦点在坐标轴上;③焦距为,且过点.目的:熟悉巩固知识,运用知识.(八)回顾反思((1)启发引导学生进行归纳整理;(2)利用幻灯片展示归纳结果;(3)对学生主动学习的态度及方式给予肯定;(4)强调学生学习数学过程中,需踏实、认真的学习态度.)(1)椭圆的标准方程要注意焦点的位置与方程形成的关系;(2)用坐标法研究曲线:用运动变化的观点分析问题.\n目的:使学生理清这节课的重难点,深化对基本概念,基本理论的理解,帮助学生从感性认识升华到理性认识,同时培养学生宏观掌握知识的能力;让学生把课堂教学传授的知识尽快化为学生的素质,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标.(九)布置作业课本课后习题1、2