• 108.50 KB
  • 2022-08-16 发布

高中数学(任意角(1))教案1 苏教版必修4 教案

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
1.1.1任意角(1)一、课题:任意角(1)二、教学目标:1.理解任意角的概念;2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。三、教学重、难点:1.判断已知角所在象限;2.终边相同的角的书写。四、教学过程:(一)复习引入:1.初中所学角的概念。2.实际生活中出现一系列关于角的问题。(二)新课讲解:1.角的定义:一条射线绕着它的端点,从起始位置旋转到终止位置,形成一个角,点是角的顶点,射线分别是角的终边、始边。说明:在不引起混淆的前提下,“角”或“”可以简记为.2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角。说明:零角的始边和终边重合。3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。例如:都是第一象限角;是第四象限角。(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。例如:等等。说明:角的始边“与轴的非负半轴重合”不能说成是“与轴的正半轴重合”。因为轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。4.终边相同的角的集合:由特殊角看出:所有与角终边相同的角,连同角自身在内,都可以写成的形式;反之,所有形如\n的角都与角的终边相同。从而得出一般规律:所有与角终边相同的角,连同角在内,可构成一个集合,即:任一与角终边相同的角,都可以表示成角与整数个周角的和。说明:终边相同的角不一定相等,相等的角终边一定相同。5.例题分析:例1在与范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?(1)(2)(3)解:(1),所以,与角终边相同的角是,它是第三象限角;(2),所以,与角终边相同的角是角,它是第四象限角;(3),所以,角终边相同的角是角,它是第二象限角。例2若,试判断角所在象限。解:∵∴与终边相同,所以,在第三象限。例3写出下列各边相同的角的集合,并把中适合不等式的元素写出来:(1);(2);(3).解:(1),中适合的元素是(2),\nS中适合的元素是(3)S中适合的元素是四、课堂练习:五、课堂小结:1.正角、负角、零角的定义;2.象限角、非象限角的定义;3.终边相同的角的集合的书写及意义。六、作业:补充:1.(1)写出与终边相同的角的集合.(2)若,且,求.

相关文档