• 53.50 KB
  • 2022-08-16 发布

高中数学 系统抽样教案 新人教A版必修3 教案

  • 2页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
系统抽样教学目标:正确理解系统抽样的概念;掌握系统抽样的步骤;正确理解系统抽样与简单随机抽样的关系;掌握系统抽样的优点和缺点.教学重点:掌握系统抽样的步骤.教学难点:系统抽样时,当分段间隔k不是整数的时候怎教学用具:投影仪教学方法:类比、观察、交流、讨论、迁移教学过程:一、复习准备:1.提问:简单随机抽样应注意几点?有哪几种方法?每种方法的优点和缺点是什么?2.分别用两种方法设计从本班学生53人中抽取5人进行调查的抽样方案.3.引入:当个体的数量较多的时候,为了使个体的被抽中的机会均等,要用随机数法.可是数量太多,编号的工作量又太大,也很难搅拌均匀.面对这种情况,我们今天来学一种新的抽样方法——系统抽样.二、讲授新课:1、教学系统抽样的概念及步骤:①系统抽样概念:当总体中的个体数较多时,将总体的每个个体进行编号,并根据样本数对编号进行分段,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需样本的抽样方法.②进行系统抽样的步骤:(1)先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号等;(2)确定分段间隔k,对编号进行分段.当N/n(n是样本容量)是整数时,取k=N/n;(3)在第一段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.③注意:分段间隔k的确定.当总体个数N恰好是样本容量n的整数倍时,取;若不是整数时,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n整除.每个个体被剔除的机会相等,从而使整个抽样过程中每个个体被抽取的机会仍然相等.2、教学例题:①出示例:我校为了了解高一年级学生对教师教学的意见,打算从高一年级的500名学生中抽取50名进行调查.用系统抽样的方法,你怎样进行操作呢?解:第一步,编号,给500名同学编号.(注意和随机数法不同,500人、编号不一定是三位数.如1,2,3...);第二步,分段,确定分段间隔k=500/50=10.(把500人分成了10段);\n第三步,确定起始号,在第一段1~10里随机的选一个数(抽签法)比如6;第四步,抽取样本,每隔10个号码抽取一个,要选的50个数的编号是6、16、26、36、46.........496(如果第三步选的是10,则他们的编号是10、20、30....500)②思考:当第二步的k不是整数的时候怎么办呢?例题变式502人.(先随机剔除几个个体)③练习:在2003名同学间选出100人进行有关视力的问卷调查,你怎样选取样本呢?分析:我们知道2003/100不是整数,这时我们就要随机的选出3名同学(用什么方法?)3、小结:由同学来总结系统抽样有那些优点和缺点.(优点:可以利用个体自身的编号,对数量较多的个体操作比较便捷.缺点:当对总体情况不是很了解的情况下,样本的代表性较差.)注意:在使用抽样方法时,总体的数量较多,但必须要对总体有个大概了解的前提下.

相关文档