• 134.00 KB
  • 2022-08-17 发布

高中数学竞赛教案讲义(3)函数

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第三章函数一、基础知识定义1映射,对于任意两个集合A,B,依对应法则f,若对A中的任意一个元素x,在B中都有唯一一个元素与之对应,则称f:A→B为一个映射。定义2单射,若f:A→B是一个映射且对任意x,y∈A,xy,都有f(x)f(y)则称之为单射。定义3满射,若f:A→B是映射且对任意y∈B,都有一个x∈A使得f(x)=y,则称f:A→B是A到B上的满射。定义4一一映射,若f:A→B既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B到A由相反的对应法则f-1构成的映射,记作f-1:A→B。定义5函数,映射f:A→B中,若A,B都是非空数集,则这个映射为函数。A称为它的定义域,若x∈A,y∈B,且f(x)=y(即x对应B中的y),则y叫做x的象,x叫y的原象。集合{f(x)|x∈A}叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y=3-1的定义域为{x|x≥0,x∈R}.定义6反函数,若函数f:A→B(通常记作y=f(x))是一一映射,则它的逆映射f-1:A→B叫原函数的反函数,通常写作y=f-1(x).这里求反函数的过程是:在解析式y=f(x)中反解x得x=f-1(y),然后将x,y互换得y=f-1(x),最后指出反函数的定义域即原函数的值域。例如:函数y=的反函数是y=1-(x0).定理1互为反函数的两个函数的图象关于直线y=x对称。定理2在定义域上为增(减)函数的函数,其反函数必为增(减)函数。定义7函数的性质。(1)单调性:设函数f(x)在区间I上满足对任意的x1,x2∈I并且x1f(x2)),则称f(x)在区间I上是增(减)函数,区间I称为单调增(减)区间。(2)奇偶性:设函数y=f(x)的定义域为D,且D是关于原点对称的数集,若对于任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。(3)周期性:对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内每一个数时,f(x+T)=f(x)总成立,则称f(x)为周期函数,T\n称为这个函数的周期,如果周期中存在最小的正数T0,则这个正数叫做函数f(x)的最小正周期。定义8如果实数aa}记作开区间(a,+∞),集合{x|x≤a}记作半开半闭区间(-∞,a].定义9函数的图象,点集{(x,y)|y=f(x),x∈D}称为函数y=f(x)的图象,其中D为f(x)的定义域。通过画图不难得出函数y=f(x)的图象与其他函数图象之间的关系(a,b>0);(1)向右平移a个单位得到y=f(x-a)的图象;(2)向左平移a个单位得到y=f(x+a)的图象;(3)向下平移b个单位得到y=f(x)-b的图象;(4)与函数y=f(-x)的图象关于y轴对称;(5)与函数y=-f(-x)的图象关于原点成中心对称;(6)与函数y=f-1(x)的图象关于直线y=x对称;(7)与函数y=-f(x)的图象关于x轴对称。定理3复合函数y=f[g(x)]的单调性,记住四个字:“同增异减”。例如y=,u=2-x在(-∞,2)上是减函数,y=在(0,+∞)上是减函数,所以y=在(-∞,2)上是增函数。注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。二、方法与例题1.数形结合法。例1求方程|x-1|=的正根的个数.例2求函数f(x)=的最大值。2函数性质的应用。例3设x,y∈R,且满足,求x+y.\n例4奇函数f(x)在定义域(-1,1)内是减函数,又f(1-a)+f(1-a2)<0,求a的取值范围。例5设f(x)是定义在(-∞,+∞)上以2为周期的函数,对k∈Z,用Ik表示区间(2k-1,2k+1],已知当x∈I0时,f(x)=x2,求f(x)在Ik上的解析式。例6解方程:(3x-1)()+(2x-3)(+1)=0.3.配方法。例7求函数y=x+的值域。4.换元法。例8求函数y=(++2)(+1),x∈[0,1]的值域。\n5.判别式法。例9求函数y=的值域。6.关于反函数。例10若函数y=f(x)定义域、值域均为R,且存在反函数。若f(x)在(-∞,+∞)上递增,求证:y=f-1(x)在(-∞,+∞)上也是增函数。例11设函数f(x)=,解方程:f(x)=f-1(x).三、基础训练题1.已知X={-1,0,1},Y={-2,-1,0,1,2},映射f:X→Y满足:对任意的x∈X,它在Y中的象f(x)使得x+f(x)为偶数,这样的映射有_______个。2.给定A={1,2,3},B={-1,0,1}和映射f:X→Y,若f为单射,则f有_______个;若f为满射,则f有_______个;满足f[f(x)]=f(x)的映射有_______个。3.若直线y=k(x-2)与函数y=x2+2x图象相交于点(-1,-1),则图象与直线一共有_______个交点。\n4.函数y=f(x)的值域为[],则函数g(x)=f(x)+的值域为_______。5.已知f(x)=,则函数g(x)=f[f(x)]的值域为_______。6.已知f(x)=|x+a|,当x≥3时f(x)为增函数,则a的取值范围是_______。7.设y=f(x)在定义域(,2)内是增函数,则y=f(x2-1)的单调递减区间为_______。8.若函数y=(x)存在反函数y=-1(x),则y=-1(x)的图象与y=-(-x)的图象关于直线_______对称。9.函数f(x)满足=1-,则f()=_______。10.函数y=,x∈(1,+∞)的反函数是_______。11.求下列函数的值域:(1)y=;(2)y=;(3)y=x+2;(4)y=12.已知定义在R上,对任意x∈R,f(x)=f(x+2),且f(x)是偶函数,又当x∈[2,3]时,f(x)=x,则当x∈[-2,0]时,求f(x)的解析式。四、高考水平训练题1.已知a∈,f(x)定义域是(0,1],则g(x)=f(x+a)+f(x-a)+f(x)的定义域为_______。2.设0≤a<1时,f(x)=(a-1)x2-6ax+a+1恒为正值。则f(x)定义域为_______。3.映射f:{a,b,c,d}→{1,2,3}满足100,函数f(x)定义域为R,且f(x+a)=,求证:f(x)为周期函数。11.设关于x的方程2x2-tx-2=0的两根为α,β(α<β),已知函数f(x)=,(1)求f(α)、f(β);(2)求证:f(x)在[α,β]上是增函数;(3)对任意正数x1,x2,求证:<2|α-β|.五、联赛一试水平训练题1.奇函数f(x)存在函数f-1(x),若把y=f(x)的图象向上平移3个单位,然后向右平移2个单位后,再关于直线y=-x对称,得到的曲线所对应的函数是________.2.若a>0,a1,F(x)是奇函数,则G(x)=F(x)是________(奇偶性).3.若=x,则下列等式中正确的有________.①F(-2-x)=-2-F(x);②F(-x)=;③F(x-1)=F(x);④F(F(x))=-x.4.设函数f:R→R满足f(0)=1,且对任意x,y∈R,都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(x)=________.5.已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1。若g(x)=f(x)+1-x,则g(2002)=________.\n6.函数f(x)=的单调递增区间是________.7.函数f(x)=的奇偶性是:________奇函数,________偶函数(填是,非)。8.函数y=x+的值域为________.9.设f(x)=,对任意的a∈R,记V(a)=max{f(x)-ax|x∈[1,3]}-min{f(x)-ax|x∈[1,3]},试求V(a)的最小值。10.解方程组:(在实数范围内)11.设k∈N+,f:N+→N+满足:(1)f(x)严格递增;(2)对任意n∈N+,有f[f(n)]=kn,求证:对任意n∈N+,都有n≤f(n)≤六、联赛二试水平训练题1.求证:恰有一个定义在所有非零实数上的函数f,满足:(1)对任意x≠0,f(x)=x·f;(2)对所有的x≠-y且xy≠0,有f(x)+f(y)=1+f(x+y).2.设f(x)对一切x>0有定义,且满足:(ⅰ)f(x)在(0,+∞)是增函数;(ⅱ)任意x>0,f(x)f=1,试求f(1).3.f:[0,1]→R满足:(1)任意x∈[0,1],f(x)≥0;(2)f(1)=1;(3)当x,y,x+y∈[0,1]时,f(x)+f(y)≤f(x+y),试求最小常数c,对满足(1),(2),(3)的函数f(x)都有f(x)≤cx.4.试求f(x,y)=6(x2+y2)(x+y)-4(x2+xy+y2)-3(x+y)+5(x>0,y>0)的最小值。5.对给定的正数p,q∈(0,1),有p+q>1≥p2+q2,试求f(x)=(1-x)+在[1-q,p]上的最大值。6.已知f:(0,1)→R且f(x)=.\n当x∈时,试求f(x)的最大值。7.函数f(x)定义在整数集上,且满足f(n)=,求f(100)的值。8.函数y=f(x)定义在整个实轴上,它的图象在围绕坐标原点旋转角后不变。(1)求证:方程f(x)=x恰有一个解;(2)试给出一个具有上述性质的函数。9.设Q+是正有理数的集合,试构造一个函数f:Q+→Q+,满足这样的条件:f(xf(y))=x,y∈Q+.

相关文档