• 390.68 KB
  • 2022-08-17 发布

高中基本不等式经典例题教案

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
全方位教学辅导教案学科:数学任课教师:授课时间:2012年11月3日星期姓名性别女年级高二总课时:第次课教学内容均值不等式应用(技巧)教学目标1、熟悉均值不等式的应用题型2、掌握各种求最值的方法重点难点重点是掌握最值应用的方法难点是不等式条件的应用教学过程课前检查与交流作业完成情况:交流与沟通针对性授课一.均值不等式1.(1)若,则(2)若,则(当且仅当时取“=”)2.(1)若,则(2)若,则(当且仅当时取“=”)(3)若,则(当且仅当时取“=”)3.若,则(当且仅当时取“=”);若,则(当且仅当时取“=”)若,则(当且仅当时取“=”)3.若,则(当且仅当时取“=”)若,则(当且仅当时取“=”)4.若,则(当且仅当时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.10\n应用一:求最值例1:求下列函数的值域(1)y=3x2+(2)y=x+解题技巧:技巧一:凑项例1:(2)。变式:已知,求函数的最大值。技巧二:凑系数例1.当时,求的最大值。解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到为定值,故只需将凑上一个系数即可。评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。变式:1、设,求函数的最大值。并求此时的值10\n2.已知,求函数的最大值.;3.,求函数的最大值.技巧三:分离例3.求的值域。技巧四:换元解析二:本题看似无法运用均值不等式,可先换元,令t=x+1,化简原式在分离求最值。当,即t=时,(当t=2即x=1时取“=”号)。评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。变式(1)10\n技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数的单调性。例:求函数的值域。解:令,则因,但解得不在区间,故等号不成立,考虑单调性。因为在区间单调递增,所以在其子区间为单调递增函数,故。所以,所求函数的值域为。条件求最值1.若实数满足,则的最小值是.变式:若,求的最小值.并求x,y的值技巧六:整体代换:2:已知,且,求的最小值。。变式:(1)若且,求的最小值(2)已知且,求的最小值10\n技巧七、已知x,y为正实数,且x2+=1,求x的最大值.技巧八:已知a,b为正实数,2b+ab+a=30,求函数y=的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。点评:①本题考查不等式的应用、不等式的解法及运算能力;②如何由已知不等式出发求得的范围,关键是寻找到之间的关系,由此想到不等式,这样将已知条件转换为含的不等式,进而解得的范围.变式:1.已知a>0,b>0,ab-(a+b)=1,求a+b的最小值。2.若直角三角形周长为1,求它的面积最大值。10\n技巧九、取平方5、已知x,y为正实数,3x+2y=10,求函数W=+的最值.解法一:若利用算术平均与平方平均之间的不等关系,≤,本题很简单 +≤==2解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。W>0,W2=3x+2y+2·=10+2·≤10+()2·()2=10+(3x+2y)=20  ∴W≤=2变式:求函数的最大值。评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。应应用二:利用均值不等式证明不等式例6:已知a、b、c,且。求证:变式:1.已知为两两不相等的实数,求证:2、正数a,b,c满足a+b+c=1,求证:(1-a)(1-b)(1-c)≥8abc应用三:均值不等式与恒成立问题例:已知且,求使不等式恒成立的实数的取值范围。解:令,10\n。,课堂检测1:添加项【例1】已知,求的最小值.2:配系数【例2】已知,求的最大值.3:分拆项【例3】已知,求的最小值.4:巧用”1”代换【例4】已知正数满足,求的最小值..【例5】已知正数满足,求的最小值.10\n5:换元【例6】已知,求的最小值.【例7】已知,求的最大值.7:直接运用化为其它【例9】已知正数满足,求的取值范围.课后作业1、(1)、已知,,满足,求的最值;(2)、若,,且,求的最值;(3)、若-4<x<1,求的最大值.2、函数f(x)=(x≠0)的最大值是;此时的x值为_______________.10\n3、(2010山东理)若对任意,恒成立,则的取值范围是.4、若点在直线上,其中,则的最小值为.5、(1)、已知x+3y-2=0,则3x+27y+1的最小值为.(2)、若x,y∈(0,+∞)且2x+8y-xy=0,求x+y的最小值.6、已知两个正数满足,求使恒成立的的范围.7.函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,求的最小值为。8.(2010年合肥模拟)已知x1·x2·…·x2009·x2010=1,且x1,x2,…,x2009,x2010都是正数,则…的最小值是________.9.已知直线l过点P(2,1),且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB面积的最小值为________.10\n10.(2008年江苏卷改编)若x、y、z∈R+,x-2y+3z=0,求的最小值.11.已知A(0,9)B(0,16)是y轴正半轴上的两点,C(x,0)是x轴上任意一点,求当点C在何位置时,最大?.12.已知不等式对任意正实数恒成立,则正实数的最小值为签字教研组长:教学主任:学生:教务老师:家长:老师课后评价学生的状况、接受情况和配合程度:给家长的建议:TA-6510

相关文档