- 947.14 KB
- 2022-08-17 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
导数的背景(5月4日)教学目标 理解函数的增量与自变量的增量的比的极限的具体意义教学重点 瞬时速度、切线的斜率、边际成本教学难点 极限思想教学过程一、导入新课1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少?析:大家知道,自由落体的运动公式是(其中g是重力加速度).当时间增量很小时,从3秒到(3+)秒这段时间内,小球下落的快慢变化不大. 因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度.从3秒到(3+)秒这段时间内位移的增量:从而,.从上式可以看出,越小,越接近29.4米/秒;当无限趋近于0时,无限趋近于29.4米/秒. 此时我们说,当趋向于0时,的极限是29.4.当趋向于0时,平均速度的极限就是小球下降3秒时的速度,也叫做瞬时速度.一般地,设物体的运动规律是s=s(t),则物体在t到(t+)这段时间内的平均速度为. 如果无限趋近于0时,无限趋近于某个常数a,就说当趋向于0时,的极限为a,这时a就是物体在时刻t128\n的瞬时速度.2. 切线的斜率问题2:P(1,1)是曲线上的一点,Q是曲线上点P附近的一个点,当点Q沿曲线逐渐向点P趋近时割线PQ的斜率的变化情况.析:设点Q的横坐标为1+,则点Q的纵坐标为(1+)2,点Q对于点P的纵坐标的增量(即函数的增量),所以,割线PQ的斜率.由此可知,当点Q沿曲线逐渐向点P接近时,变得越来越小,越来越接近2;当点Q无限接近于点P时,即无限趋近于0时,无限趋近于2. 这表明,割线PQ无限趋近于过点P且斜率为2的直线. 我们把这条直线叫做曲线在点P处的切线. 由点斜式,这条切线的方程为:.一般地,已知函数的图象是曲线C,P(),Q()是曲线C上的两点,当点Q沿曲线逐渐向点P接近时,割线PQ绕着点P转动. 当点Q沿着曲线无限接近点P,即趋向于0时,如果割线PQ无限趋近于一个极限位置PT,那么直线PT叫做曲线在点P处的切线. 此时,割线PQ的斜率无限趋近于切线PT的斜率k,也就是说,当趋向于0时,割线PQ的斜率的极限为k.3. 边际成本问题3:设成本为C,产量为q,成本与产量的函数关系式为,我们来研究当q=50时,产量变化对成本的影响.在本问题中,成本的增量为:.128\n产量变化对成本的影响可用:来刻划,越小,越接近300;当无限趋近于0时,无限趋近于300,我们就说当趋向于0时,的极限是300.我们把的极限300叫做当q=50时的边际成本. 一般地,设C是成本,q是产量,成本与产量的函数关系式为C=C(q),当产量为时,产量变化对成本的影响可用增量比刻划. 如果无限趋近于0时,无限趋近于常数A,经济学上称A为边际成本. 它表明当产量为时,增加单位产量需付出成本A(这是实际付出成本的一个近似值).二、小结 瞬时速度是平均速度当趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率当趋近于0时的极限;边际成本是平均成本当趋近于0时的极限.三、练习与作业:1. 某物体的运动方程为(位移单位:m,时间单位:s)求它在t=2s时的速度.128\n2. 判断曲线在点P(1,2)处是否有切线,如果有,求出切线的方程.3. 已知成本C与产量q的函数关系式为,求当产量q=80时的边际成本.4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h(单位:m)与时间t(单位:s)之间的函数关系为,求t=4s时此球在垂直方向的瞬时速度.128\n5. 判断曲线在(1,)处是否有切线,如果有,求出切线的方程.6. 已知成本C与产量q的函数关系为,求当产量q=30时的边际成本.导数的概念(5月4日)教学目标与要求:理解导数的概念并会运用概念求导数。128\n教学重点:导数的概念以及求导数教学难点:导数的概念教学过程:一、导入新课:上节我们讨论了瞬时速度、切线的斜率和边际成本。虽然它们的实际意义不同,但从函数角度来看,却是相同的,都是研究函数的增量与自变量的增量的比的极限。由此我们引出下面导数的概念。二、新授课:1.设函数在处附近有定义,当自变量在处有增量时,则函数相应地有增量,如果时,与的比(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫做函数在处的导数,记作,即128\n注:1.函数应在点的附近有定义,否则导数不存在。2.在定义导数的极限式中,趋近于0可正、可负、但不为0,而可能为0。3.是函数对自变量在范围内的平均变化率,它的几何意义是过曲线上点()及点)的割线斜率。4.导数是函数在点的处瞬时变化率,它反映的函数在点处变化的快慢程度,它的几何意义是曲线上点()处的切线的斜率。因此,如果在点可导,则曲线在点()处的切线方程为。5.导数是一个局部概念,它只与函数在及其附近的函数值有关,与无关。6.在定义式中,设,则,当趋近于0时,趋近于,因此,导数的定义式可写成128\n。7.若极限不存在,则称函数在点处不可导。8.若在可导,则曲线在点()有切线存在。反之不然,若曲线在点()有切线,函数在不一定可导,并且,若函数在不可导,曲线在点()也可能有切线。一般地,,其中为常数。特别地,。如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数。称这个函数为函数在开区间内的导函数,简称导数,也可记作,即==函数在处的导数就是函数在开区间128\n上导数在处的函数值,即=。所以函数在处的导数也记作。注:1.如果函数在开区间内每一点都有导数,则称函数在开区间内可导。2.导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。它们之间的关系是函数在点处的导数就是导函数在点的函数值。3.求导函数时,只需将求导数式中的换成就可,即=4.由导数的定义可知,求函数的导数的一般方法是:(1).求函数的改变量。(2).求平均变化率。(3).取极限,得导数=。例1.求在=-3处的导数。128\n例2.已知函数(1)求。(2)求函数在=2处的导数。128\n小结:理解导数的概念并会运用概念求导数。练习与作业:1.求下列函数的导数:(1); (2)(3)(3)128\n2.求函数在-1,0,1处导数。3.求下列函数在指定点处的导数:(1); (2);128\n(3) (4).4.求下列函数的导数:(1) (2);(3) (4)128\n。5.求函数在-2,0,2处的导数。导数的概念习题课(5月6日)教学目标 理解导数的有关概念,掌握导数的运算法则教学重点 导数的概念及求导法则教学难点 导数的概念一、课前预习1.在点128\n处的导数是函数值的改变量___________与相应自变量的改变量__的商当______________2.若在开区间(a,b)内每一点都有导数,称为函数的导函数;求一个函数的导数,就是求_____;求一个函数在给定点的导数,就是求_____.函数在点处的导数就是_____________.3.常数函数和幂函数的求导公式: 4.导数运算法则:若________________,则:二、举例例1.设函数,求:(1)当自变量x由1变到1.1时,自变量的增量;(2)当自变量x由1变到1.1时,函数的增量;(3)当自变量x由1变到1.1时,函数的平均变化率;(4)函数在x=1处的变化率.128\n例2.生产某种产品q个单位时成本函数为,求(1)生产90个单位该产品时的平均成本;(2)生产90个到100个单位该产品时,成本的平均变化率;(3)生产90个与100个单位该产品时的边际成本各是多少.例3.已知函数,由定义求,并求.例4.已知函数(a,b为常数),求.128\n例5.曲线上哪一点的切线与直线平行?三、巩固练习1.若函数,则=______2.如果函数在点处的导数分别为:(1) (2)(3) (4),试求函数的图象在对应点处的切线的倾斜角.3.已知函数,求,,.128\n4.求下列函数的导数(1) (2)(3) (4)四、作业1.若存在,则=_____2.若,则=______________3.求下列函数的导数:(1) (2)(3) (4)128\n4.某工厂每日产品的总成本C是日产量x的函数,即,试求:(1)当日产量为100时的平均成本;(2)当日产量由100增加到125时,增加部分的平均成本;(3)当日产量为100时的边际成本.5.设电量与时间的函数关系为,求t=3s时的电流强度.128\n6.设质点的运动方程是,计算从t=2到t=2+之间的平均速度,并计算当=0.1时的平均速度,再计算t=2时的瞬时速度.7.若曲线的切线垂直于直线,试求这条切线的方程.8.在抛物线上,哪一点的切线处于下述位置?(1)与x轴平行(2)平行于第一象限角的平分线.128\n(3)与x轴相交成45°角9.已知曲线上有两点A(2,0),B(1,1),求:(1)割线AB的斜率; (2)过点A的切线的斜率;(3)点A处的切线的方程.10.在抛物线上依次取M(1,1),N(3,9)两点,作过这两点的割线,问:抛物线上哪一点处的切线平行于这条割线?并求这条切线的方程.128\n11.已知一气球的半径以10cm/s的速度增长,求半径为10cm时,该气球的体积与表面积的增长速度.12.一长方形两边长分别用x与y表示,如果x以0.01m/s的速度减小,y边以0.02m/s的速度增加,求在x=20m,y=15m时,长方形面积的变化率.13.(选做)证明:过曲线上的任何一点()()的切线与两坐标轴围成的三角形面积是一个常数.(提示:128\n)导数的应用习题课(5月8日)教学目标 掌握导数的几何意义,会求多项式函数的单调区间、极值、最值教学重点 多项式函数的单调区间、极值、最值的求法教学难点 多项式函数极值点的求法、多项式函数最值的应用一、课前预习1.设函数在某个区间内有导数,如果在这个区间内____,则是这个区间内的_____;如果在这个区间内___,则是这个区间内的_____.2.设函数在及其附近有定义,如果的值比附近所有各点的值都大(小),则称是函数的一个______.3.如果在某个区间内有导数,则可以这样求它的极值:(1)求导数_____; (2128\n)求方程________的根(可能极值点);(3)如果在根的左侧附近为_,右侧附近为_,则函数在这个根处取得极_值;如果在根的左侧附近为_,右侧附近为_,则函数在这个根处取得极_值.4.设是定义在[a,b]上的函数,在(a,b)内有导数,可以这样求最值:(1)求出函数在(a,b)内的可能极值点(即方程在(a,b)内的根);(2)比较函数值,与,其中最大的一个为最大值,最小的一个为最小值.二、举例例1.确定函数的单调区间.128\n例2.设一质点的运动速度是,问:从t=0到t=10这段时间内,运动速度的改变情况怎样?例3.求函数的极值.例4.设函数在=1与=2处取得极值,试确定a和b的值,并问此时函数在与处是取极大值还是极小值?128\n例5.求函数在[-2,2]上的最大值和最小值.例6.矩形横梁的强度与它断面的高的平方与宽的积成正比例,要将直径为d的圆木锯成强度最大的横梁,断面的宽和高应为多少?128\n例7.求内接于抛物线与x轴所围图形内的最大矩形的面积.例8.某种产品的总成本C(单位:万元)是产量x(单位:万件)的函数:,试问:当生产水平为x=10万件时,从降低单位成本角度看,继续提高产量是否得当?128\n三、巩固练习1.若函数在区间[a,b]内恒有,则此函数在[a,b]上的最小值是____2.曲线的极值点是______________3.设函数在x=1处取得极大值-2,则a=____.4.求下列函数的单调区间:(1) (2)128\n5.求下列函数的极值:(1), (2),[-4,4]6.求下列函数的最值:(1),[-3,10] (2),[-1,4]128\n7.设某企业每季度生产某个产品q个单位时,总成本函数为,(其中a>0,b>0,c>0),求:(1)使平均成本最小的产量(2)最小平均成本及相应的边际成本.8.一个企业生产某种产品,每批生产q单位时的总成本为(单位:百元),可得的总收入为(单位:百元),问:每批生产该产品多少单位时,能使利润最大?最大利润是多少?128\n9.在曲线上找一点(),过此点作一切线,与x轴、y轴构成一个三角形,问:为何值时,此三角形面积最小?10.已知生产某种彩色电视机的总成本函数为,通过市场调查,可以预计这种彩电的年需求量为,其中p(单位:元)是彩电售价,q(单位:台)是需求量. 试求使利润最大的销售量和销售价格.128\n多项式函数的导数(5月6日)教学目的:会用导数的运算法则求简单多项式函数的导数教学重点:导数运算法则的应用教学难点:多项式函数的求导一、复习引入1、已知函数,由定义求2、根据导数的定义求下列函数的导数:(1)常数函数(2)函数128\n二、新课讲授1、两个常用函数的导数:2、导数的运算法则:如果函数有导数,那么也就是说,两个函数的和或差的导数,等于这两个函数的导数的和或差;常数与函数的积的导数,等于常数乘函数的导数.例1:求下列函数的导数:(1)(2)(3)(4)(5)为常数)128\n例2:已知曲线上一点,求:(1)过点P的切线的斜率;(2)过点P的切线方程.三、课堂小结:多项式函数求导法则的应用四、课堂练习:1、求下列函数的导数:(1)(2)(3)(4)(5)(6)2、已知曲线上有两点A(4,0),B(2,4),求:(1)割线AB的斜率;(2)过点A处的切线的斜率;(3)点A处的切线的方程.3、求曲线在点M(2,6)处的切线方程.128\n五、课堂作业1、求下列函数的导数:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)2、求曲线在处的切线的斜率。3、求抛物线在处及处的切线的方程。4、求曲线在点P(2,-3)处的切线的方程。函数的单调性与极值(5月10日)教学目标:正确理解利用导数判断函数的单调性的原理;掌握利用导数判断函数单调性的方法;128\n教学重点:利用导数判断函数单调性;教学难点:利用导数判断函数单调性教学过程:一引入:以前,我们用定义来判断函数的单调性.在假设x10时,函数y=f(x)在区间(2,)内为增函数;在区间(,2)内,切线的斜率为负,函数y=f(x)的值随着x的增大而减小,即0时,函数y=f(x)在区间(,2)内为减函数.定义:一般地,设函数y=f(x)在某个区间内有导数,如果在这个区间内>0,那么函数y=f(x)在为这个区间内的增函数;,如果在这个区间内<0,那么函数y=f(x)在为这个区间内的减函数。例1确定函数在哪个区间内是增函数,哪个区间内是减函数。128\ny例2确定函数的单调区间。x022极大值与极小值观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。一般地,设函数y=f(x)在及其附近有定义,如果的值比附近所有各点的函数值都大,我们说f()是函数y=f(x)的一个极大值;如果的值比附近所有各点的函数值都小,我们说f()是函数y=f(x)的一个极小值。极大值与极小值统称极值。128\n在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点:(ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。(ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。oaX1X2X3X4baxy(ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而>。128\n(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点。而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。由上图可以看出,在函数取得极值处,如果曲线有切线的话,则切线是水平的,从而有。但反过来不一定。如函数,在处,曲线的切线是水平的,但这点的函数值既不比它附近的点的函数值大,也不比它附近的点的函数值小。假设使,那么在什么情况下是的极值点呢?oaX0baxyoaX0baxy128\n如上左图所示,若是的极大值点,则两侧附近点的函数值必须小于。因此,的左侧附近只能是增函数,即。的右侧附近只能是减函数,即,同理,如上右图所示,若是极小值点,则在的左侧附近只能是减函数,即,在的右侧附近只能是增函数,即,从而我们得出结论:若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正”,则是的极小值点,128\n是极小值。xoy例3求函数的极值。三小结1求极值常按如下步骤:128\n①确定函数的定义域;②求导数;③求方程=0的根,这些根也称为可能极值点;④检查在方程的根的左右两侧的符号,确定极值点。(最好通过列表法)四巩固练习1确定下列函数的单调区间:(1)(2)2求下列函数的极值(1)(2)(3)(4)128\n五课堂作业1确定下列函数的单调区间:(1)(2)(3)(4)2求下列函数的极值(1)(2)(3)(4)(5)(6)函数的极限(4月29日)128\n教学目标:1、使学生掌握当时函数的极限; 2、了解:的充分必要条件是教学重点:掌握当时函数的极限教学难点:对“时,当时函数的极限的概念”的理解。教学过程:一、复习:(1)_____;(2)(3)二、新课就问题(3)展开讨论:函数当无限趋近于2时的变化趋势当从左侧趋近于2时 ()1.11.31.51.71.91.991.9991.99992y=x21.21当从右侧趋近于2时 ()2.92.72.52.32.12.012.0012.00012y=x28.41.7.2912OXYHY1。发现我们再继续看当无限趋近于1()时的变化趋势;函数的极限有概念:当自变量无限趋近于(128\n)时,如果函数无限趋近于一个常数A,就说当趋向时,函数的极限是A,记作。特别地,;三、例题求下列函数在X=0处的极限(1) (2) (3) 四、小结:函数极限存在的条件;如何求函数的极限。128\n五、练习及作业:1、对于函数填写下表,并画出函数的图象,观察当无限趋近于1时的变化趋势,说出当时函数的极限0.10.90.990.9990.99990.999991y=2X+11.51.11.011.0011.00011.000011y=2X+12、对于函数填写下表,并画出函数的图象,观察当无限趋近于3时的变化趋势,说出当时函数的极限2.92.992.9992.99992.999992.9999993y=X2-13.13.013.0013.00013.000013.0000013y=X2-1128\n3 () 函数的最大与最小值(5月8日)教学目标:1、使学生掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值; 2、使学生掌握用导数求函数的极值及最值的方法教学重点:掌握用导数求函数的极值及最值的方法教学难点:提高“用导数求函数的极值及最值”的应用能力一、复习:1、;2、3、求y=x3—27x的极值。二、新课yxX2oaX3bx1128\n在某些问题中,往往关心的是函数在一个定义区间上,哪个值最大,哪个值最小观察下面一个定义在区间上的函数的图象发现图中____________是极小值,_________是极大值,在区间上的函数的最大值是______,最小值是_______在区间上求函数的最大值与最小值的步骤:1、函数在内有导数;2、求函数在内的极值3、将函数在内的极值与比较,其中最大的一个为最大值,最小的一个为最小值三、例1、求函数在区间上的最大值与最小值。解:先求导数,得令=0即解得导数的正负以及,如下表X-2(-2,-1)-1(-1,0)0(0,1)1(1,2)2y/0+0-0+y1345413从上表知,当时,函数有最大值13,当128\n时,函数有最小值4在日常生活中,常常会遇到什么条件下可以使材料最省,时间最少,效率最高等问题,这往往可以归结为求函数的最大值或最小值问题。例2 用边长为60CM的正方形铁皮做一个无盖的水箱,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成,问水箱底边的长取多少时,水箱容积最大,最大容积是多少?128\n例3、已知某商品生产成本C与产量P的函数关系为C=100+4P,价格R与产量P的函数关系为R=25-0.125P,求产量P为何值时,利润L最大。128\n四、小结:1、闭区间上的连续函数一定有最值;开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值。2、函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个。3、在解决实际应用问题中,关键在于建立数学模型和目标函数;如果函数在区间内只有一个极值点,那么根据实际意义判断是最大值还是最小值即可,不必再与端点的函数值进行比较。五、练习及作业::1、函数在区间上的最大值与最小值128\n2、求函数在区间上的最大值与最小值。 3、求函数在区间上的最大值与最小值。128\n4、求函数在区间上的最大值与最小值。5、给出下面四个命题(1)函数在区间上的最大值为10,最小值为-(2)函数(2<X<4)上的最大值为17,最小值为1 (3)函数(-3<X<3)上的最大值为16 , 最小值为-16(4)函数(-2<X<2)上 无 最大值 也无 最小值。其中正确的命题有____________6、把长度为LCM的线段分成四段,围成一个矩形,问怎样分法,所围成矩形的面积最大。128\n7、把长度为LCM的线段分成二段,围成一个正方形,问怎样分法,所围成正方形的面积最小。8、某商品一件的成本为30元,在某段时间内,若以每件X元出售,可以卖出(200-X)件,应该如何定价才能使利润L最大?128\n9、在曲线Y=1—X2(X0,Y0)上找一点了(),过此点作一切线,与X、Y轴构成一个三角形,问X0为何值时,此三角形面积最小?10、要设计一个容积为V的圆柱形水池,已知底的单位面积造价是侧面的单位面积造价的一半,问:如何设计水池的底半径和高,才能使总造价最少?(提示:)函数极限的运算法则(4月30日)教学目标:掌握函数极限的运算法则,并会求简单的函数的极限教学重点:运用函数极限的运算法则求极限教学难点:函数极限法则的运用教学过程:一、引入:一些简单函数可从变化趋势找出它们的极限,如.128\n若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算.二、新课讲授对于函数极限有如下的运算法则:如果,那么也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0).说明:当C是常数,n是正整数时,这些法则对于的情况仍然适用.三典例剖析例1求128\n例2求例3求分析:当时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数在定义域内,可以将分子、分母约去公因式后变成,由此即可求出函数的极限.128\n例4求分析:当时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。总结:128\n例5求分析:同例4一样,不能直接用法则求极限.如果分子、分母都除以,就可以运用法则计算了。四课堂练习(利用函数的极限法则求下列函数极限)(1);(2)(3);(4)(5)(6)128\n(7)(8)五小结1有限个函数的和(或积)的极限等于这些函数的和(或积);2函数的运算法则成立的前提条件是函数的极限存在,在进行极限运算时,要特别注意这一点.3两个(或几个)函数的极限至少有一个不存在时,他们的和、差、积、商的极限不一定不存在.4在求几个函数的和(或积)的极限时,一般要化简,再求极限.六作业(求下列极限)(1)(2)(3)128\n(4)(5)(6)(7)(8)(9)(10)(11)(12)128\n(13)(14)(15)(16)(17)(18)极限的概念(4月27日)教学目的:理解数列和函数极限的概念;教学重点:会判断一些简单数列和函数的极限;教学难点:数列和函数极限的理解教学过程:一、实例引入:128\n例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第天剩余的木棒长度(尺),并分析变化趋势;(2)求前天截下的木棒的总长度(尺),并分析变化趋势。观察以上两个数列都具有这样的特点:当项数无限增大时,数列的项无限趋近于某个常数A(即无限趋近于0)。无限趋近于常数A,意指“可以任意地靠近A,希望它有多近就有多近,只要充分大,就能达到我们所希望的那么近。”即“动点到A的距离可以任意小。二、新课讲授1、数列极限的定义:一般地,如果当项数无限增大时,无穷数列的项无限趋近于某个常数A(即无限趋近于0),那么就说数列的极限是A,记作注:①上式读作“当趋向于无穷大时,的极限等于A”。“128\n∞”表示“趋向于无穷大”,即无限增大的意思。有时也记作当∞时,A②引例中的两个数列的极限可分别表示为_____________________,____________________③思考:是否所有的无穷数列都有极限?例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由(1)1,,,…,,…;(2),,,…,,…;(3)-2,-2,-2,…,-2,…;(4)-0.1,0.01,-0.001,…,,…;(5)-1,1,-1,…,,…;128\n注:几个重要极限:(1)(2)(C是常数)(3)无穷等比数列()的极限是0,即:2、当时函数的极限Oyx(1)画出函数的图像,观察当自变量取正值且无限增大时,函数值的变化情况:函数值无限趋近于0,这时就说,当趋向于正无穷大时,函数的极限是0,记作:一般地,当自变量取正值且无限增大时,如果函数的值无限趋近于一个常数A,就说当趋向于正无穷大时,函数的极限是A,记作:128\n也可以记作,当时,(2)从图中还可以看出,当自变量取负值而无限增大时,函数的值无限趋近于0,这时就说,当趋向于负无穷大时,函数的极限是0,记作:一般地,当自变量取负值而无限增大时,如果函数的值无限趋近于一个常数A,就说当趋向于负无穷大时,函数的极限是A,记作:也可以记作,当时,(3)从上面的讨论可以知道,当自变量的绝对值无限增大时,函数的值都无限趋近于0,这时就说,当趋向于无穷大时,函数的极限是0,记作一般地,当自变量的绝对值无限增大时,如果函数的值无限趋近于一个常数A,就说当趋向于无穷大时,函数的极限是A,记作:也可以记作,当时,特例:对于函数(是常数),当自变量的绝对值无限增大时,函数的值保持不变,所以当趋向于无穷大时,函数的极限就是,即128\n例2:判断下列函数的极限:(1)(2)(3)(4)三、课堂小结1、数列的极限2、当时函数的极限四、练习与作业1、判断下列数列是否有极限,若有,写出极限(1)1,,,…,,…;(2)7,7,7,…,7,…;128\n(3);(4)2,4,6,8,…,2n,…;(5)0.1,0.01,0.001,…,,…;(6)0,…,,…;(7)…,,…;(8)…,,…;(9)-2, 0,-2,…,,…,2、判断下列函数的极限:(1)(2)(3)(4)(5)(6)(7)(8)补充:3、如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC128\n的中点。(1)求证:MN⊥AB;(2)若平面PCD与平面ABCD所成的二面角为θ,能否确定θ,使得MN是异面直线AB与PC的公垂线?若可以确定,试求θ的值;若不能,说明理由。数列极限的运算法则(5月3日)教学目标:掌握数列极限的运算法则,并会求简单的数列极限的极限。教学重点:运用数列极限的运算法则求极限教学难点:数列极限法则的运用教学过程:一、复习引入:128\n函数极限的运算法则:如果则_______,____(B)二、新授课:数列极限的运算法则与函数极限的运算法则类似:如果那么 推广:上面法则可以推广到有限多个数列的情况。例如,若,,有极限,则:特别地,如果C是常数,那么二.例题:例1.已知,求128\n例2.求下列极限:(1); (2)例3.求下列有限:(1) (2)分析:(1)(2)当无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。128\n例4.求下列极限:(1)(2)128\n说明:1.数列极限的运算法则成立的前提的条件是:数列的极限都是存在,在进行极限运算时,要特别注意这一点。当无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。2.有限个数列的和(积)的极限等于这些数列的极限的和(积)。3.两个(或几个)函数(或数列)的极限至少有一个不存在,但它们的和、差、积、商的极限不一定不存在。小结:在数列的极限都是存在的前提下,才能运用数列极限的运算法则进行计算;数列极限的运算法则是对有限的数列是成立的。练习与作业:1.已知,求下列极限128\n(1); (2)2.求下列极限:(1); (2)。3.求下列极限(1); (2) ;128\n(3); (4)。4.求下列极限已知求下列极限:(1). (2). 128\n5.求下列极限:(1). (2).(3). (4).(5). (6).128\n(7). (8)(9)(10).已知求无穷等比数列各项的和(5月4日)教学目的:掌握无穷等比数列各项的和公式;教学重点:无穷等比数列各项的和公式的应用教学过程:一、复习引入1、等比数列的前n项和公式是128\n_________________________________________________2、设AB是长为1的一条线段,等分AB得到分点A1,再等分线段A1B得到分点A2,如此无限继续下去,线段AA1,A1A2,…,An-1An,…的长度构成数列①可以看到,随着分点的增多,点An越来越接近点B,由此可以猜想,当n无穷大时,AA1+A1A2+…+An-1An的极限是________.下面来验证猜想的正确性,并加以推广128\n二、新课讲授1、无穷等比数列各项的和:公比的绝对值小于1的无穷等比数列前n项的和当n无限增大时的极限,叫做这个无穷等比数列各项的和.设无穷等比数列的公比的绝对值小于1,则其各项的和S为例1、求无穷等比数列0.3,0.03,0.003,…各项的和.例2、将无限循环小数化为分数.128\n三、课堂小结:1、无穷等比数列各项的和公式;2、化循环小数为分数的方法四、练习与作业1、求下列无穷等比数列各项的和:(1)(2)(3)(4)2、化循环小数为分数:(1)(2)128\n(3)(4)3、如图,等边三角形ABC的面积等于1,连结这个三角形各边的中点得到一个小三角形,又连结这个小三角形各边的中点得到一个更小的三角形,如此无限继续下去,求所有这些三角形的面积的和.4、如图,三角形的一条底边是a,这条边上的高是h(1)过高的5等分点分别作底边的平行线,并作出相应的4个矩形,求这些矩形面积的和(2)把高n等分,同样作出n-1个矩形,求这些矩形面积的和;(3)求证:当n无限增大时,这些矩形面积的和的极限等于三角形的面积ah/2128\n128\n抽样方法 (4月21日)教学目标:了解简单随机抽样与分层抽样的概念,要求会用简单随机抽样和分层抽样这两种常用的抽样方法从总体中抽取样本。教学重点:会用简单随机抽样和分层抽样两种方法从总体中抽取样本教学难点:会用简单随机抽样和分层抽样两种方法从总体中抽取样本教学过程:复习:1.在统计里,我们把______________叫总体,其中的____________叫个体,从总体中_______________________叫一个样本,样本中_________叫做样本容量。2.从5万多名考生中随机抽取500名学生的成绩,用他们的平均128\n成绩去估计所有考生的平均成绩,指出:_______是总体,___________是个体,__________________是总体的一个样本,样本容量是______。3.我们在初中学习过一些统计知识,了解统计的基本思想方法是用样本估计总体,即通过不是直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况,例如,我们通常用样本平均去估计总体平均数,这样,样本的抽取是否得当,对于研究总体来说十分关键。那么,怎样从总体中抽取样本呢?怎样使所抽取的样本能更充分地反映总体的情况呢?下面我们介绍两种常用的抽样方法:简单随机抽样和分层抽样。二、新课讲授:1.简单随机抽样:假定一个小组有6个学生,要通过逐个抽取的方法从中取3个学生参加一项活动,第1次抽取时每个被抽到的概率是___,128\n第2次抽取时,余下的每个被抽到的概率都是__,第3次抽取时,余下的每个被抽到的概率都是__。每次抽取时各个个体被抽到的概率是相等的,那么在整个抽样过程中每个个体被抽到的概率是否确实相等?例如,从含有6个体的总体中抽取一个容量为2的样本,在整个抽样过程中,总体中的任意一个个体,在第一次抽取时,它被抽到的概率是__;若它第1次未被抽到而第2次被抽到的概率是____,由于个体第1次被抽到与第2次被抽到是___(填互斥,独立)事件,根据___事件的概率__公式,在整个抽样过程中,个体被抽到的概率P=_______。又由于个体的任意性,说明在抽样过程中每个体被抽到的概率相等,都是__。一般地,设一个总体的个体总数为N,如果通过逐个抽取的方法从中抽取样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。128\n事实上:用简单随机抽样的方法从个体数为N的总体中逐次抽取一个容量为的样本,那么每次抽取时各个个体被抽到的概率相等,依次是,且在整个抽样过程中每个个体被抽到概率都等于。 由于简单随机抽样体现了抽样的客观性和公平性,且这种抽样方法比较简单,所以成为一种基本的抽样方法。如何实施简单抽样呢?下面介绍两种常用方法(1)抽签法先将总体中的所有个体编号(号码可以从1到N),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时,每次从中抽出1个号签,连续抽取次,就得到一个容量为的样本,对个体编号时,也可以利用已有的编号,例如从全班学生中抽取样本时,可以利用学生的学号、座位号等。抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。128\n(2)随机数表法下面举例说明如何用随机数表来抽取样本。为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,在利用随机数表抽取这个样本时,可以按下面的步骤进行:第一步,先将40件产品编号,可以编为00,01,02,,38,39。第二步,在附录1随机数表中任选一个数作为开始,例如从第8行第5列的数59开始,为便于说明,我们将附录1中的第6行至第10行摘录如下。1622779439495443548217379323788735209643842634916484421753315724550688770474476721763350258392120676630163785916955567199810507175128673580744395238793321123429786456078252420744381551001342128\n996602795457608632440947279654491746096290528477270802734328第三步,从选定的数59开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34。至此,10个样本号码已经取满,于是,所要抽取的样本号码是16 19 10 12 07 39 38 33 21 34 注 将总体中的N个个体编号时可以从0开始,例如N=100时编号可以是00,01,02,99,这样总体中的所有个体均可用两位数字号码表示,便于运用随机数表。当随机地选定开始读数的数后,读数的方向可以向右,也可128\n以向左、向上、向下等等。在上面每两位、每两位地读数过程中,得到一串两位数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。由于随机数表中每个位置上出现哪一个数字是等概率的,每次读到哪一个两位数字号码,即从总体中抽到哪一个个体的号码也是等概率的。因而利用随机数表抽取样本保证了各个个体被抽取的概率相等。2.分层抽样一个单位的职工有500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?为了使抽出的100名职工更充分地反映单位职工的整体情况,在各个年龄段可按这部分职工人数与职工总数的比进行抽样。128\n因为抽取人数与职工总数的比为100:500=1:5所以在各年龄段抽取的职工人数依次是即25,56,19在各个年龄段分别抽取时,可采用前面介绍的简单随机抽样的方法,将各年龄段抽取的职工合在一起,就是所要抽取的100名职工。像这样当已知总体由差异明显的几部分组成时,为了使样本更充分地反映总体的情况,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽取叫做分层抽样,其中所分成的各部分叫做层。可以看到,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,分层抽样时,每一个个体被抽到的概率都是相等的。由于分层抽样充分利用了已知信息,使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,128\n因此分层抽样在实践中有着广泛的应用。以上我们简单介绍了简单随机抽样和分层抽样,这两种抽样方法的共同特点是:在整个抽样过程中每个个体被抽取的概率相等。简单随机抽样是最基本的抽样方法,当总体由差异明显的几部分组成,采取分层抽样时,其中各层的抽样常采用简单随机抽样。小结:了解简单随机抽样与分层抽样的概率,会用简单随机抽样与分层抽样从总体中抽取样本。作业:1.某市的3个区共有高中学生20000人,且3个区的高中学生人数之比为2:3:5,现要用分层抽样方法从所有学生中抽取一个容量为200的样本,这3个区分别应抽取多少人?2.要从全班学生中随机抽选8人去参加一项活动,分别用抽签法和随机数表法进行抽选128\n并写出过程。 抽样方法习题课4月22日教学目的:会用简单随机抽样和分层抽样从总体中抽取样本教学重点:简单随机抽样和分层抽样的应用教学难点:对抽样中的“随机”、“估计”的思想的理解教学过程:一、复习回顾1、采用简单随机抽样时,常用的方法有____________、__________________.2、当总体由差异明显的几部分组成时,通常采用____________方法抽取样本.3、某农场在三块地种有玉米,其中平地种有150亩,河沟地种有30亩,坡地种有90亩,估产时,可按照__________的比例从各块地中抽取样本.4、某学校有教师160人,后勤服务人员40人,行政管理人员20人,要从中抽选22人参加学区召开的职工代表大会,为了使所抽的人员更具有代表性,分别应从上述人员中抽选教师_______人,后勤服务人员______人,行政管理人员_____人.二、例题解析例1:说明在以下问题中,总体、个体、样本、样本容量各指什么:(1)为了了解某学校在一个学期里每天的缺席人数,统计了其中15天里每天的缺席人数(2)为了了解某地区考生(20000名)的高考数学平均成绩,从中抽取了1000128\n名考生的成绩.例2:欲从全班45名学生中随机抽取10名学生参加一项社区服务活动,试用随机数表法确定这10名学生.评注:利用随机数表法抽取样本时,从第几行的第几个数开始,按照什么方向取数都完全是任意的。例3:某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如下表所示:128\n很喜爱喜爱一般不喜爱2435456739261072电视台为了了解观众的具体想法和意见,打算从中抽选出60人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出多少人?评注:分层抽样的两个步骤:①先求出样本容量与总体的个数的比值;②按比例分配各层所要抽取的个体数。但应注意有时计算出的个体数可能是一个近似数,这并不影响样本的容量.三、课堂练习1、为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A总体是240B个体是每一个学生C样本是40名学生D样本容量是402、为了考察一段时间内某路口的车流量,测得每小时的平均车流量是576辆,所测时间内的总车流量是11520辆,那么,此问题中,样本容量是________3、为了解初一学生的身体发育情况,打算在初一年级10个班的某两个班按男女生比例抽取样本,正确的抽样方法是()A随机抽样B分层抽样C先用抽签法,再用分层抽样D先用分层抽样,再用随机数表法4、从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是ABCD5、某大学共有全日制学生15000人,其中专科生3788人、本科生9874人、研究生1338人,现为了调查学生上网查找资料的情况,欲从中抽取225人,为了使样本具有代表性,各层次学生分别应抽出多少人才合适?128\n四、课堂小结1、抽样的两种方法:简单随机抽样与分层抽样2、分层抽样的步骤:①算样本容量与总体的个数的比值;②求各层所要抽取的个体的数目五、课堂作业1、为了了解所加工的一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A总体B个体C总体的一个样本D样本容量2、为了分析高三年级的8个班400名学生第一次高考模拟考试的数学成绩,决定在8个班中每班随机抽取12份试卷进行分析,这个问题中样本容量是()A8B400C96D96名学生的成绩3、一总体由差异明显的三部分数据组成,分别有m个、n个、p个,现要从中抽取a个数据作为样本考虑总体的情况,各部分数据应分别抽取____________、 ___________、_______________.4、某地有2000人参加自学考试,为了解他们的成绩,从中抽取一个样本,若每个考生被抽到的概率都是0.04,则这个样本的容量是_________5、在不大于1的正有理数中任取100个数,在这个问题中,总体、个体、样本、样本容量各指什么?6、某医院在一段时间内接诊患有心脏病、高血压、癌症病人共6000人,且三类病人之比是1:2:3,为了跟踪调查病人的恢复情况,现要用分层抽样方法从所有病人中抽取一个容量为120的样本,每类病人分别应抽取多少人?128\n7、某网站欲调查网民对当前网页的满意程度,在登录的所有网民中,收回有效帖子共50000份,其中持各种态度的份数如下表所示:很满意满意一般不满意10800124001560011200为了了解网民的具体想法和意见,以便决定如何更改才能使网页更完美,打算从中抽选500份,为使样本更具有代表性,每类中各应抽选出多少份?实习作业(4月26日)教学目标 能运用简单随机抽样、分层抽样的方法抽取样本;能通过对样本的频率分布估计总体分布;培养学生动手能力和解决实际问题能力教学重点 抽样方法的选择;总体分布的分析教学难点 抽样方法的选择;总体分布的分析教学过程 一、引入 128\n 大家已经知道了如何从总体中抽取样本,如何根据对样本的整理、计算和分析,对总体的情况作出一些推断.今天就要求大家自己动手,运用所学知识解决实际问题.二、举例例 某中学高中部共有16个班级,其中一年级6个班,二年级6个班,三年级4个班.每个班的人数均在46人左右(44人-49人),各班的男女学生数均基本各占一半.现要调查这所学校学生的周体育活动时间,它是指学生在一周中参加早锻炼、课间操、课外体育活动、体育比赛等时间的总和(体育课、上学和放学路上的活动时间不计在内).为使所得数据更加可靠,应在所定抽样的“周”之后的两天内完成抽样工作. 此外还有以下具体要求:(1)分别对男、女学生抽取一个容量相同的样本,样本容量可在40-50之间选择.(2)写出实习报告,其中含:全部样本数据;相应于男生样本的与,相应于女生的128\n与,相应于男、女全体的样本的;对上面计算结果作出分析.解:(1)由于各个年级的学生参加体育活动的时间存在差异,应采用分层抽样;又由于各班的学生数相差不多,且每班的男女学生人数也基本各占一半,为便于操作,分层抽样时可以班级为单位.关于抽取人数,如果从每班中抽取男、女学生各3人,样本容量各为48(3×16),符合对样本容量的要求.(2)实习报告如表一所示.(3)想一想:1.如何从,直接得出? 2.根据上面的样本数据,还能得出什么结果?例如,二年级和三年级的学生相比,其与是否存在差异?三、练习128\n在本班范围内,就每名学生所在家庭的月人均用水量进行调查.调查的具体要求是:先查得在同一月份内各家的用水量(单位以计),然后将它除以家庭人中数,结果保留到小数点后第2位);再将所得数据进行整理、计算和分析,完成下列实习报告.(表二)四、小结 抽样时需要对所抽取的统计量的具体含义加以明确的界定;当总体的个体数较多时,对抽样方法的运用可以有一定的灵活性.五、作业两位同学各取一副52张的花色牌,每张牌都标有从1到13之间的一个正整数(其中A表示1,J表示11,Q表示12,K表示13).从这副牌中任抽1张,记下这张牌上的数,再将这张牌放回,然后再从中任抽1张,记下牌上的数后,将这张牌放回.如此重复100次,得到100个数.求其平均数、方差及标准差,各自列出自己的频率分布表,绘出频率分布直方图,对比两人得出的结果,体会随机抽样的特点及内涵,写出实验报告.128\n附:表一题目调查本校学生周体育活动的时间对抽取样本的要求1.周体育活动时间,指一周中(包括双休日)参加早锻炼、课间操、课外体育活动、体育比赛等时间的总和(体育课和上学、放学路上的活动时间不计在内).2.在所定抽样的“周”之后的两天内完成抽样工作.3.男、女学生的两个样本的容量相同,并在40-50之间选择.确定抽样方法和样本容量采用分层抽样,以班为单位,从每班中抽取男、女学生各3人,两个样本的容量均为48,在各班抽取时,采用随机数表法.男生女生128\n样本数据(单位:分)一年级380 500 245 450 145 620 480 420 520 280 550 660 350 500 330 600 180 520230 460 600 110 420 105 580 400 420 380 180 500 140 450 600 400 125 540二年级420 580 510 175 280 630 400 150 450 360 450 330 400 420 300 500 580 400280 380 530 95 100 570 300 220 320 250 300 350 400 360 130 450 590 230三年级380 420 235 125 400 470 330 200 420 280 300 410200 460 165 400 75 430 300 220 250 130 270 340男生 ,128\n计算结果女生 ,男、女生全体 计算结果分析从计算结果看到,在周体育活动时间方面,可以估计男生比女生略多,且波动程度略小,这所学校高中学生的周体育活动时间平均约为 分.表二题目调查本班每名学生所在家庭的月人均用水量对获取数据的要求这里的用水量是指同一月份内各学生所在家庭的人均用水量(下月第1天的水表数与本月第1天的水表数之差),数据单位为,结果保留到小数点后第2位.样本数据(单位:)128\n频率分布表频率分布直方图128\n样本平均数统计结果的分析要求讨论:通过对本问题的调查统计分析,可对全班同学所在地区的家庭月人均用水量作出何种估计?备注1.128\n为了在所要求的时间内获取数据,调查任务就提前布置.2.实习报告可由部分同学完成,然后向全班同学报告并进行讨论.表三题目随机抽样的特点及内涵对抽样的要求从52张花色牌有放回地任抽一张样本数据样本平均数样本方差样本标准差频率分布表128\n频率分布直方图128\n计算结果分析总体方差(标准差)的估计教学要求:理解方差和标准差的意义,会求样本方差和标准差。教学过程:看一个问题:甲乙两个射击运动员在选拔赛中各射击20次,成绩如下:甲786865910745656787999乙95787686779658696877问:派谁参加比赛合适?128\n一、方差和标准差计算公式:样本方差:s2=〔(x1—)2+(x2—)2+…+(xn—)2〕样本标准差:s=方差和标准差的意义:描述一个样本和总体的波动大小的特征数。标准差大说明波动大。一般的计算器都有这个键。例一、要从甲乙两名跳远运动员中选拔一名去参加运动会,选拔的标准是:先看他们的平均成绩,如果两人的平均成绩相差无几,就要再看他们成绩的稳定程度。为此对两人进行了15次比赛,得到如下数据:(单位:cm):甲755752757744743729721731778768761773764736741乙128\n729767744750745753745752769743760755748752747如何通过对上述数据的处理,来作出选人的决定呢?甲≈乙≈s甲≈s乙≈说明:总体平均数描述一总体的平均水平,方差和标准差描述数据的波动情况或者叫稳定程度。二、练习:1、甲658496128\n乙876582根据以上数据,说明哪个波动小?2、从甲乙两个总体中各抽取了一个样本:甲900920900850910920乙890960950850860890根据上述样本估计,哪个总体的波动较小?3、甲乙两人在相同条件下个射击20次,命中的环数如下:甲7868659107456678791096128\n乙95787686779658696877问谁射击的情况比较稳定?三、作业:1、为了考察甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:甲12131415101613111511乙111617141319681016哪种小麦长得比较整齐?2、某农场种植的甲乙两种水稻,在连续6128\n年中各年的平均产量如下:品种第1年第2年第3年第4年第5年第6年甲6.756.96.756.386.836.9乙6.687.27.136.386.456.68哪种水稻的产量比较稳定?总体分布的估计(4月24日)教学目标通过统计案例,会用样本频率分布估计总体分布教学重点用样本频率分布估计总体分布教学难点频率分布表和频率分布直方图的绘制教学过程一引入128\n在统计中,为了考察一个总体的情况,通常是从总体中抽取一个样本,用样本的有关情况去估计总体的相应情况。这种估计大体分为两类,一类是用样本频率分布估计总体分布,一类是用样本的某种数字特征(例如平均数、方差等)去估计总体的相应数字特征。下面我们先通过案例来介绍总体分布的估计。二案例分析例1为了了解某地区高三学生的身体发育情况,抽查了地区内100名年龄为17.5岁~18岁的男生的体重情况,结果如下(单位:kg)56.569.56561.564.566.56464.57658.57273.556677057.565.56871756268.562.56659.563.564.567.57368557266.574636055.57064.5586470.55762.5656971.573625876716663.55659.563.5657074.568.56455.572.566.5687657.56071.55769.57464.55961.5676863.558128\n5965.562.569.57264.575.568.5646265.558.567.570.5656666.5706359.5试根据上述数据画出样本的频率分布直方图,并对相应的总体分布作出估计。解:按照下列步骤获得样本的频率分布.(1)求最大值与最小值的差.在上述数据中,最大值是76,最小值是55,它们的差(又称为极差)是76—55=21)所得的差告诉我们,这组数据的变动范围有多大.(2)确定组距与组数.如果将组距定为2,那么由21÷2=10.5,组数为11,这个组数适合的.于是组距为2,组数为11.(3)决定分点.根据本例中数据的特点,第1小组的起点可取为54.5,第1小组的终点可取为56.5128\n,为了避免一个数据既是起点,又是终点从而造成重复计算,我们规定分组的区间是“左闭右开”的.这样,所得到的分组是[54.5,56.5),[56.5,58.5),…,[74.5,76.5).(4)列频率分布表如表①频率分布表分组频数累计频数频率[54.5,56.5)20.02[56.5,58.5)60.06[58.5,60.5)100.10[60.5,62.5)100.10128\n[62.5,64.5)140.14[64.5,66.5)160.16[66.5,68.5)130.13[68.5,70.5)110.11[70.5,72.5)80.08[72.5,74.5)70.07[74.5,76.5)30.03128\n合计1001.00(5)绘制频率分布直方图.频率分布直方图如图1-1所示体重54.5频率/组距56.558.574.572.566.568.570.576.562.560.564.5由于图中各小长方形的面积等于相应各组的频率,这个图形的面积的形式反映了数据落在各个小组的频率的大小.在反映样本的频率分布方面,频率分步表比较确切,频率分布直方图比较直观,它们起着相互补充的作用.在得到了样本的频率后,就可以对相应的总体情况作出估计.例如可以估计,体重在(64.5,66.5)kg的学生最多,约占学生总数的16%;体重小于58.5kg的学生较少,约占8%;等等.128\n三巩固练习1有一个容量为50的样本数据的分组及各组的频数如下:[12.5,15.5)3[24.5,27.5)10[15.5,18.5)8[27.5,30.5)5[18.5,21.5)9[30.5,33.5)4[21.5,24.5)11(1)列出样本的频率分布表和画出频率分布直方图;(2)根据样本的频率分布估计,小于30.5的数据约占多少?128\n2食品厂为加强质量管理,抽查了某天生产的罐头80只,得其质量数据如下(单位:克)342340348346343342346341344348346346340344342344345340344344336348344345332342342340350343347340344353340340356346345346340339342352342350348344350336340338345345349336342335343343341347341347344339347348343347346344343344342333345128\n339350337(1)画出样本的频率分布直方图;(2)根据样本的频率分布估计,质量不小于350克的罐头约占多少?四小结获得样本的频率分布的步骤:(1)求最大值与最小值的差;(2)128\n确定组距与组数;(3)决定分点;(4)列频率分布表;(5)绘制频率分布直方图.五作业1某人在同一条件下射靶50次,其中射中5环或5环以下2次,射中6环3次,射中7环9次,射中8环21次,射中9环11次,射中10环4次.(1)画出上述样本的频率分布直方图;(2)根据上述结果估计,该射击者射中7环—9环的概率约是多少?128\n2在生产过程中,测得维尼纶的纤度(表示纤维粗细的一种量)有如下的100个数据:1.361.491.431.411.371.401.301.421.471.391.411.361.401.341.421.421.451.351.421.391.441.421.391.421.421.301.341.421.371.361.371.341.371.371.441.451.321.481.401.451.391.461.391.531.361.481.401.391.381.401.361.451.501.431.381.431.411.481.391.451.371.371.391.451.311.411.441.441.421.471.351.361.391.401.381.351.421.431.421.421.421.401.411.371.461.361.371.271.371.381.421.341.431.421.411.411.441.481.55128\n1.37(1)画出样本的频率分布直方图;(2)根据上述结果估计,小于各端点值的数据所占的百分比各约是多少?总体期望值的估计(4月24日)教学目标:1、使学生掌握用样本的平均数去估计总体期望值。2、培养学生分析数据的能力。教学重点:计算样本(总体)的平均数教学难点:适当抽样提高样本的代表性。教学过程:一、引言:在初中,总体平均数(又称为总体期望值)描述了一个总体的平均水平。对很多总体来说,它的平均数不易求得,常用容易求得的样本平均数:对它进行估计,而且常用两个样本平均数的大小去近似地比较相应的两个总体的平均数的大小。128\n二、新课:例1、在一批试验田里对某早稻品种进行丰产栽培试验,抽测了其中15块试验田的单位面积(单位面积的大小为)的产量如下:(单位:KG)504402492495500501405409460486460371420456395这批试验田的平均单位面积产量约是多少?例2、某校高二年级进行一次数学测试,抽取40人,算出其平均成绩为80分,为准确起见,后来又抽取50人,算出其平均成绩为83分,通过两次抽样的结果,估计这次数学测试的平均成绩。128\n例3、被誉为“杂交水稻之父”的中国科学院院士袁隆平,为了得到良种水稻,进行了大量试验,下表是在10个试验点对A、B两个品种的对比试验结果:品种各试验点亩产量(KG)12345678910A490509527497520582497489538532B504486463475530473470475453512试估计哪个品种的平均产量更高一些?三、小结:用样本的平均数去估计总体平均数(总体期望值)128\n简单易行,因而用途十分广泛,但估计的结果具有一定的近似性,甚至可能出现较大的偏差与疏误,这与确定性数学中通过逻辑推理得到肯定的结论的情况有所不同,学习中要注意体会。为了使样本更充分地反映总体的情况,可在条件许可的情况下,适当增加样本容量,并力求使抽样方法更加合理,以提高样本的代表性。四、作业:1、已知10个数据:1203120111941200120412011199120411951199它们的平均数是()A1300B1200C1100D14002、若M个数的平均数是X,N个数的平均数是Y,则这M+N个数的平均数是()ABCD3、某工厂研制A、B两种灯泡,为了比较这两种灯泡的平均使用寿命,从这两种灯泡中各抽10只进行的使用寿命试验,得到如下数据(单位:小时)A。1000120016501342167999913201540128\n12761342B。1580142013201149133011781440155316421005根据上述两个样本,能对两种灯泡的平均使用寿命作出什么样的估计?4、一个水库养了某种鱼10万条,从中捕捞了20条,称得它们的质量如下:(单位:KG)1.151.041.11 1.071.101.321.251.191.151.211.181.141.091.251.211.291.161.241.121.16128\n计算样本平均数,并根据计算结果估计水库里所有这种鱼的总质量约是多少?5、从A、B两种棉花中各抽10株,测得它们的株高如下:(CM)A、25414037221419392142B、27164427441640164040(1)哪种棉花的苗长得高?(2)哪种棉花的苗长得整齐?128