• 230.86 KB
  • 2022-08-17 发布

【教案】新课标高中数学人教A版优秀教案必修1全集3示范教案

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第2课时导入新课问题:①分别在整数范围和实数范围内解方程(x-3)(x-3)=0,其结果会相同吗?②若集合A={x|02+3}.而4,5,6都大于2+3,∴(A)∩B={4,5,6}.答案:B思路21.已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求:(1)A,B;(2)(A)∪(B),(A∩B),由此你发现了什么结论?(3)(A)∩(B),(A∪B),由此你发现了什么结论?活动:学生回想补集的含义,教师指导学生利用数轴来解决.依据补集的含义,借助于数轴求得.在数轴上表示集合A,B.解:如图1-1-3-10所示,图1-1-3-10(1)由图得A={x|x<-2或x>4},B={x|x<-3或x>3}.(2)由图得(A)∪(B)={x|x<-2或x>4}∪{x|x<-3或x>3}={x|x<-2或x>3};∵A∩B={x|-2≤x≤4}∩{x|-3≤x≤3}={x|-2≤x≤3},∴(A∩B)={x|-2≤x≤3}={x|x<-2或x>3}.∴得出结论(A∩B)=(A)∪(B).(3)由图得(A)∩(B)={x|x<-2或x>4}∩{x|x<-3或x>3}={x|x<-3或x>4};精品学习资料可选择pdf第3页,共9页-----------------------\n∵A∪B={x|-2≤x≤4}∪{x|-3≤x≤3}={x|-3≤x≤4},∴(A∪B)={x|-3≤x≤4}={x|x<-3或x>4}.∴得出结论(A∪B)=(A)∩(B).变式训练1.2006重庆高考,理1已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∪(B)等于()A.{1,6}B.{4,5}C.{1,2,3,4,5,7}D.{1,2,3,6,7}答案:D2.2005江西高考,理1设集合I={x||x|<3,x∈Z},A={1,2},B={-2,-1,2},则A∪(B)等于()A.{1}B.{1,2}C.{2}D.{0,1,2}答案:D2.设全集U={x|x≤20,x∈N,x是质数},A∩(B)={3,5},(A)∩B={7,19},(A)∩(B)={2,17},求集合A、B.活动:学生回顾集合的运算的含义,明确全集中的元素.利用列举法表示全集U,根据题中所给的条件,把集合中的元素填入相应的Venn图中即可.求集合A、B的关键是确定它们的元素,由于全集是U,则集合A、B中的元素均属于全集U,由于本题中的集合均是有限集并且元素的个数不多,可借助于Venn图来解决.解:U={2,3,5,7,11,13,17,19},由题意借助于Venn图,如图1-1-3-11所示,图1-1-3-11∴A={3,5,11,13},B={7,11,13,19}.点评:本题主要考查集合的运算、Venn图以及推理能力.借助于Venn图分析集合的运算问题,使问题简捷地获得解决,将本来抽象的集合问题直观形象地表现出来,这正体现了数形结合思想的优越性.变式训练1.2007临沂高三期末统考,文1图1-1-3-12设I为全集,M、N、P都是它的子集,则图1-1-3-12中阴影部分表示的集合是()A.M∩[(N)∩P]B.M∩(N∪P)精品学习资料可选择pdf第4页,共9页-----------------------\nC.[(M)∩(N)]∩PD.M∩N∪(N∩P)分析:思路一:阴影部分在集合M内部,排除C;阴影部分不在集合N内,排除B、D.思路二:阴影部分在集合M内部,即是M的子集,又阴影部分在P内不在集合N内即在(N)∩P内,所以阴影部分表示的集合是M∩[(N)∩P].答案:A2.设U={1,2,3,4,5,6,7,8,9},(A)∩B={3,7},(B)∩A={2,8},(A)∩(B)={1,5,6},则集合A=________,B=________.分析:借助Venn,如图1-1-3-13,把相关运算的结果表示出来,自然地就得出集合A、B了.图1-1-3-13答案:{2,4,8,9}{3,4,7,9}知能训练课本P11练习4.【补充练习】1.设全集U=R,A={x|2x+1>0},试用文字语言表述A的意义.解:A={x|2x+1>0}即不等式2x+1>0的解集,A中元素均不能使2x+1>0成立,即A中元素应当满足2x+1≤0.∴A即不等式2x+1≤0的解集.2.如图1-1-3-14所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是_______.图1-1-3-14分析:观察图可以看出,阴影部分满足两个条件:一是不在集合S内;二是在集合M,P的公共部分内,因此阴影部分表示的集合是集合S的补集与集合M,P的交集的交集,即(S)∩(M∩P).答案:(S)∩(M∩P)3.2007安徽淮南一模,理1设集合A、B都是U={1,2,3,4}的子集,已知(A)∩(B)={2},(A)∩B={1},则A等于()A.{1,2}B.{2,3}C.{3,4}D.{1,4}分析:如图1-1-3-15所示.精品学习资料可选择pdf第5页,共9页-----------------------\n图1-1-3-15由于(A)∩(B)={2},(A)∩B={1},则有A={1,2}.∴A={3,4}.答案:C4.2006安徽高考,文1设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(S∪T)等于()A.B.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}分析:直接观察(或画出Venn图),得S∪T={1,3,5,6},则(S∪T)={2,4,7,8}.答案:B5.2007河北石家庄一模,文1已知集合I={1,2,3,4},A={1},B={2,4},则A∪(B)等于()A.{1}B.{1,3}C.{3}D.{1,2,3}分析:∵B={1,3},∴A∪(B)={1}∪{1,3}={1,3}.答案:B拓展提升问题:某班有学生50人,解甲、乙两道数学题,已知解对甲题者有34人,解对乙题者有28人,两题均解对者有20人,问:(1)至少解对其中一题者有多少人?(2)两题均未解对者有多少人?分析:先利用集合表示解对甲、乙两道数学题各种类型,然后根据题意写出它们的运算,问题便得到解决.解:设全集为U,A={只解对甲题的学生},B={只解对乙题的学生},C={甲、乙两题都解对的学生},则A∪C={解对甲题的学生},B∪C={解对乙题的学生},A∪B∪C={至少解对一题的学生},(A∪B∪C)={两题均未解对的学生}.由已知,A∪C有34个人,C有20个人,从而知A有14个人;B∪C有28个人,C有20个人,所以B有8个人.因此A∪B∪C有N1=14+8+20=42(人),(A∪B∪C)有N2=50-42=8(人).∴至少解对其中一题者有42个人,两题均未解对者有8个人.课堂小结本节课学习了:①全集和补集的概念和求法.精品学习资料可选择pdf第6页,共9页-----------------------\n②常借助于数轴或Venn图进行集合的补集运算.作业课本P12习题1.1A组9、10,B组4.设计感想本节教学设计注重渗透数形结合的思想方法,因此在教学过程中要重点指导学生借助于数轴或Venn图进行集合的补集运算.由于高考中集合常与以后学习的不等式等知识紧密结合,本节也对此也予以体现,可以利用课余时间学习有关解不等式的知识.习题详解(课本P5练习)1.(1)中国∈A,美国A,印度∈A,英国A.2(2)∵A={x|x=x}={0,1},∴-1A.2(3)∵B={x|x+x-6=0}={-3,2},∴3A.(4)∵C={x∈N|1≤x≤10}={1,2,3,4,5,6,7,8,9,10},∴8∈C,9.1C.22.(1){x|x=9}或{-3,3};(2){2,3,5,7};yx3(3){(x,y)|}或{(1,4)};y-2x6(4){x∈R|4x-5<3}或{x|x<2}.(课本P7练习)1.,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.2.(1)a∈{a,b,c}.22(2)∵x=0,∴x=0.∴{x|x=0}={0}.∴0∈{0}.22(3)∵x+1=0,∴x=-1.又∵x∈R,22∴方程x=-1无解.∴{x∈R|x+1=0}=.∴=.(4).2(5)∵x=x,∴x=0或x=1.2∴{x|x=x}={0,1}.∴{0}{0,1}.2(6)∵x-3x+2=0,∴x=1或x=2.2∴{x|x-3x+2=0}={1,2}.∴{2,1}={1,2}.3.(1)由于1是任何正整数的公约数,任何正整数都是自身的公约数,所以8的公约数是1,2,4,8,即B={1,2,4,8}.∴AB.(2)显然BA,又∵3∈A,且3B,∴BA.(3)4与10的最小公倍数是20,4与10的公倍数应是20的倍数,显然A=B.(课本P11练习)1.A∩B={5,8},A∪B={3,5,6,7,8}.22.∵x-4x-5=0,∴x=-1或x=5.2∵A={x|x-4x-5=0}={-1,5},精品学习资料可选择pdf第7页,共9页-----------------------\n同理,B={-1,1}.∴A∪B={-1,5}∪{-1,1}={-1,1,5},A∩B={-1,5}∩{-1,1}={-1}.3.A∩B={x|x是等腰直角三角形},A∪B={x|x是等腰三角形或直角三角形}.4.∵B={2,4,6},A={1,3,6,7},∴A∩(B)={2,4,5}∩{2,4,6}={2,4},(A)∩(B)={1,3,6,7}∩{2,4,6}={6}.(课本P11习题1.1)A组1.(1)∈(2)∈(3)(4)∈(5)∈(6)∈2.(1)∈(2)(3)∈3.(1){2,3,4,5};(2){-2,1};(3){0,1,2}.(3)∵-3<2x-1≤3,∴-2<2x≤4.∴-1-3},B={x|x≥2},∴-4B,-3A,{2}B,BA.2(2)∵A={x|x-1=0}={-1,1},∴1∈A,{-1}A,A,{1,-1}=A.(3);.6.∵B={x|3x-7≥8-2x}={x|x≥3},∴A∪B={x|2≤x<4}∪{x|x≥3}={x|x≥2},A∩B={x|2≤x<4}∩{x|x≥3}={x|3≤x<4}.7.依题意,可知A={1,2,3,4,5,6,7,8},所以A∩B={1,2,3,4,5,6,7,8}∩{1,2,3}={1,2,3}=B,A∩C={1,2,3,4,5,6,7,8}∩{3,4,5,6}={3,4,5,6}=C.又∵B∪C={1,2,3}∪{3,4,5,6}={1,2,3,4,5,6}.∴A∩(B∪C)={1,2,3,4,5,6,7,8}∩{1,2,3,4,5,6}={1,2,3,4,5,6}.又∵B∩C={1,2,3}∩{3,4,5,6}={3},∴A∪(B∩C)={1,2,3,4,5,6,7,8}∪{3}={1,2,3,4,5,6,7,8}=A.8.(1)A∪B={x|x是参加一百米跑的同学或参加二百米跑的同学}.(2)A∩C={x|x是既参加一百米跑又参加四百米跑的同学}.9.B∩C={x|x是正方形},B={x|x是邻边不相等的平行四边形},A={x|x是梯形}.精品学习资料可选择pdf第8页,共9页-----------------------\n10.∵A∪B={x|3≤x<7}∪{x|2