• 6.93 MB
  • 2022-08-17 发布

高中物理选修3-5全套教案

  • 58页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
高中物理选修3-5全套教案第一章动量守恒研究新课标要求(1)探究物体弹性碰撞的一些特点,知道弹性碰撞和非弹性碰撞;(2)通过实验,理解动量和动量守恒定律,能用动量守恒定律定量分析一维碰撞问题,知道动量守恒定律的普遍意义;例1:火箭的发射利用了反冲现象。例2:收集资料,了解中子是怎样发现的。讨论动量守恒定律在其中的作用。(3)通过物理学中的守恒定律,体会自然界的和谐与统一。第二节动量和动量定理三维教学目标1、知识与技能:知道动量定理的适用条件和适用范围;2、过程与方法:在理解动量定理的确切含义的基础上正确区分动量改变量与冲量;3、情感、态度与价值观:培养逻辑思维能力,会应用动量定理分析计算有关问题。教学重点:动量、冲量的概念和动量定理。教学难点:动量的变化。教学方法:教师启发、引导,学生讨论、交流。教学用具:投影片,多媒体辅助教学设备。1、动量及其变化(1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv单位:kg·m/s读作“千克米每秒”。理解要点:①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念。②矢量性:动量的方向与速度方向一致。综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。(2)动量的变化量:1、定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p=p′-p为物体在该过程中的动量变化。2、指出:动量变化△p是矢量。方向与速度变化量△v相同。一维情况下:Δp=mΔυ=mυ2-mΔυ1矢量差例1:一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少?2、动量定理(1)内容:物体所受合外力的冲量等于物体的动量变化\n(2)公式:Ft=m-mv=-让学生来分析此公式中各量的意义:其中F是物体所受合外力,mv是初动量,m是末动量,t是物体从初动量变化到末动量所需时间,也是合外力F作用的时间。(3)单位:F的单位是N,t的单位是s,p和的单位是kg·m/s(kg·ms-1)。(4)动量定理不仅适用恒力作用,也适用变力作用的情况(此时的力应为平均作用力)(5)动量定理不仅适用于宏观低速物体,对微观现象和高速运动仍然适用.前面我们通过理论推导得到了动量定理的数学表达式,下面对动量定理作进一步的理解。(6)动量定理中的方向性例2:课本书第8页题2小结:公式Ft=m-mv是矢量式,计算时应先确定正方向。合外力的冲量的方向与物体动量变化的方向相同。合外力冲量的方向可以跟初动量方向相同,也可以相反。小结:式中的F必须是合外力,因此解题时一定要对研究对象进行受力分析,避免少力的情况。同时培养学生养成分析多过程物理问题的一般方法,分阶段法。学生练习:练习11页题3总结:1、应用动量定理解题的基本步骤2、应用动量定理解答时要注意几个问题,一是矢量性,二是F表示合外力。同时动量定理既适用恒力,也适用于变力;既适用直线运动,也适用于曲线运动。作业:课本练习第12页题3,4教学反思:组长签字:年月日\n3、动量定理的应用演示实验:鸡蛋落地【演示】先让一个鸡蛋从一米多高的地方下落到细沙堆中,让学生推测一下鸡蛋的“命运”,然后做这个实验,结果发现并没有象学生想象的那样严重:发现鸡蛋不会被打破;然后让鸡蛋从一米多高的地方下落到讲台上,让学生推测一下鸡蛋的“命运”,然后做这个实验,结果鸡蛋被打破。请学生分析鸡蛋的运动过程并说明鸡蛋打破的原因。鸡蛋从某一高度下落,分别与硬板和细沙堆接触前的速度是相同的,也即初动量相同,碰撞后速度均变为零,即末动量均为零,因而在相互作用过程中鸡蛋的动量变化量相同。而两种情况下的相互作用时间不同,与硬板碰时作用时间短,与细沙堆相碰时作用时间较长,由Ft=△p知,鸡蛋与硬板相碰时作用力大,会被打破,与细沙堆相碰时作用力较小,因而不会被打破。在实际应用中,有的需要作用时间短,得到很大的作用力而被人们所利用,有的需要延长作用时间(即缓冲)减少力的作用。请同学们再举些有关实际应用的例子。加强对周围事物的观察能力,勤于思考,一定会有收获。在实际应用中,有的需要作用时间短,得到很大的作用力,而被人们所利用;有的要延长作用时间而减少力的作用,请同学们再举出一些有关实际应用的例子,并进行分析。(用铁锤钉钉子、跳远时要落入沙坑中等现象)。(加强对周围事物的观察,勤于思考,一定会有收获。)用动量定理解释现象可分为下列三种情况:(l)△p一定,t短则F大,t长则F小;(2)F一定,t短则△p小,t长则△p大;\n(3)t一定,F大则△p大,F小则△p小。例如以下现象并请学生分析。l、一个人慢行和跑步时,不小心与迎面的一棵树相撞,其感觉有什么不同?请解释。2、一辆满载货物的卡车和一辆小轿车在同样的牵引力作用下都从静止开始获得相同的速度,哪辆车起动更快?为什么?3、人下扶梯时往往一级一级往下走,而不是直接往下跳跃七、八级,这是为什么?第二节动量守恒定律(1)三维教学目标1、知识与技能:理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围;2、过程与方法:在理解动量守恒定律的确切含义的基础上正确区分内力和外力;3、情感、态度与价值观:培养逻辑思维能力,会应用动量守恒定律分析计算有关问题。教学重点:动量守恒定律。教学难点:动量守恒的条件。教学方法:教师启发、引导,学生讨论、交流。教学用具:投影片,多媒体辅助教学设备。(一)引入演示:(1)台球由于两球碰撞而改变运动状态。(2)微观粒子之间由于相互碰撞而改变状态,甚至使得一种粒子转化为其他粒子。碰撞是日常生活、生产活动中常见的一种现象,两个物体发生碰撞后,速度都发生变化。两个物体的质量比例不同时,它们的速度变化也不一样。物理学中研究运动过程中的守恒量具有特别重要的意义,本节通过实验探究碰撞过程中的什么物理量保持不变(守恒)。(二)进行新课1、实验探究的基本思路(1)一维碰撞我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。这种碰撞叫做一维碰撞。演示:\n如图所示,A、B是悬挂起来的钢球,把小球A拉起使其悬线与竖直线夹一角度a,放开后A球运动到最低点与B球发生碰撞,碰后B球摆幅为β角,如两球的质量mA=mB,碰后A球静止,B球摆角β=α,这说明A、B两球碰后交换了速度;如果mA>mB,碰后A、B两球一起向右摆动;如果mA>F外的条件)(2)碰撞过程中,物体没有宏观的位移,但每个物体的速度可在短暂的时间内发生改变。(3)碰撞过程中,系统的总动能只能不变或减少,不可能增加。提问:碰撞中,总动能减少最多的情况是什么?(在发生完全非弹性碰撞时总动能减少最多)(二)进行新课1、展示投影片1,内容如下:如图所示,质量为M的重锤自h高度由静止开始下落,砸到质量为m的木楔上没有弹起,二者一起向下运动.设地层给它们的平均阻力为F,则木楔可进入的深度L是多少?组织学生认真读题,并给三分钟时间思考。(1)提问学生解题方法:可能出现的错误是:认为过程中只有地层阻力F做负功使机械能损失,因而解之为Mg(h+L)+mgL-FL=0。\n(2)归纳:第一阶段,M做自由落体运动机械能守恒,m不动,直到M开始接触m为止。再下面一个阶段,M与m以共同速度开始向地层内运动,阻力F做负功,系统机械能损失。提问:第一阶段结束时,M有速度,,而m速度为零。下一阶段开始时,M与m就具有共同速度,即m的速度不为零了,这种变化是如何实现的呢?(在上述前后两个阶段中间,还有一个短暂的阶段,在这个阶段中,M和m发生了完全非弹性碰撞,这个阶段中,机械能(动能)是有损失的)(3)让学生独立地写出完整的方程组第一阶段,对重锤有:第二阶段,对重锤及木楔有:Mv+0=(M+m).第三阶段,对重锤及木楔有:(4)小结:在这类问题中,没有出现碰撞两个字,碰撞过程是隐含在整个物理过程之中的,在做题中,要认真分析物理过程,发掘隐含的碰撞问题。2、展示内容如下:如图所示,在光滑水平地面上,质量为M的滑块上用轻杆及轻绳悬吊质量为m的小球,此装置一起以速度v0向右滑动,另一质量也为M的滑块静止于上述装置的右侧。当两滑块相撞后,便粘在一起向右运动,则小球此时的运动速度是多少?(1)提问学生解答方案:可能出现的错误有:在碰撞过程中水平动量守恒,设碰后共同速度为v,则有:(M+m)v0+0=(2M+m)v解得:小球速度(2)明确表示此种解法是错误的。提醒学生注意碰撞的特点:即宏观没有位移,速度发生变化,然后要求学生们寻找错误的原因.(3)归纳,明确以下的研究方法:①碰撞之前滑块与小球做匀速直线运动,悬线处于竖直方向。②两个滑块碰撞时间极其短暂,碰撞前、后瞬间相比,滑块及小球的宏观位置都没有发生改变,因此悬线仍保持竖直方向。③碰撞前后悬线都保持竖直方向,因此碰撞过程中,悬线不可能给小球以水平方向的作用力,因此小球的水平速度不变。④结论是:小球未参与滑块之间的完全非弹性碰撞,小球的速度保持为v0小结:由于碰撞中宏观无位移,所以在有些问题中,不是所有物体都参与了碰撞过程,在遇到具体问题时一定要注意分析与区别。3、展示内容如下:在光滑水平面上,有A、B两个小球向右沿同一直线运动,取向右为正,两球的动量分别是pA=5kgm/s,pB=7kgm/s,如图所示,若能发生正碰,则碰后两球的动量增量△pA、△pB可能是  ()A.△pA=-3kgm/s;△pB=3kgm/s\nB.△pA=3kgm/s;△pB=3kgm/sC.△pA=-10kgm/s;△pB=10kgm/sD.△pA=3kgm/s;△pB=-3kgm/s(1)提问:解决此类问题的依据是什么?归纳:①系统动量守恒;②系统的总动能不能增加;③系统总能量的减少量不能大于发生完全非弹性碰撞时的能量减少量;④碰撞中每个物体动量的增量方向一定与受力方向相同;⑤如碰撞后向同方向运动,则后面物体的速度不能大于前面物体的速度。(2)提问:题目仅给出两球的动量,如何比较碰撞过程中的能量变化?(帮助学生回忆的关系)(3)提问:题目没有直接给出两球的质量关系,如何找到质量关系?要求学生认真读题,挖掘隐含的质量关系,即A追上B并相碰撞,所以:,即,最后得到正确答案为A4、展示内容如下:如图所示,质量为m的小球被长为L的轻绳拴住,轻绳的一端固定在O点,将小球拉到绳子拉直并与水平面成θ角的位置上,将小球由静止释放,则小球经过最低点时的即时速度是多大?组织学生认真读题,并给三分钟思考时间。(1)提问学生解答方法:可能出现的错误有:认为轻绳的拉力不做功,因此过程中机械能守恒,以最低点为重力势能的零点,则:得(2)引导学生分析物理过程第一阶段,小球做自由落体运动,直到轻绳位于水平面以下,与水平面成θ角的位置处为止.在这一阶段,小球只受重力作用,机械能守恒成立。下一阶段,轻绳绷直,拉住小球做竖直面上的圆周运动,直到小球来到最低点,在此过程中,轻绳拉力不做功,机械能守恒成立。提问:在第一阶段终止的时刻,小球的瞬时速度是什么方向?在下一阶段初始的时刻,小球的瞬时速度是什么方向?在学生找到这两个速度方向的不同后,要求学生解释其原因,总结归纳学生的解释,明确以下观点:在第一阶段终止时刻,小球的速度竖直向下,既有沿下一步圆周运动轨道切线方向(即与轻绳相垂直的方向)的分量,又有沿轨道半径方向(即沿轻绳方向)的分量.在轻绳绷直的一瞬间,轻绳给小球一个很大的冲量,使小球沿绳方向的动量减小到零,此过程很类似于悬挂轻绳的物体(例如天花板)与小球在沿绳的方向上发生了完全非弹性碰撞,由于天花板的质量无限大(相对小球),因此碰后共同速度趋向于零.在这个过程中,小球沿绳方向分速度所对应的一份动能全部损失了.因此,整个运动过程按机械能守恒来处理就是错误的.\n(3)要求学生重新写出正确的方程组解得:小结:很多实际问题都可以类比为碰撞,建立合理的碰撞模型可以很简洁直观地解决问题,下面继续看例题。5、展示内容如下:如图所示,质量分别为mA和mB的滑块之间用轻质弹簧相连,水平地面光滑,mA、mB原来静止,在瞬间给mB一很大的冲量,使mB获得初速度v0,则在以后的运动中,弹簧的最大势能是多少?(1)mA、mB与弹簧所构成的系统在下一步运动过程中能否类比为一个mA、mB发生碰撞的模型?(因系统水平方向动量守恒,所以可类比为碰撞模型)(2)当弹性势能最大时,系统相当于发生了什么样的碰撞?(势能最大,动能损失就最大,因此可建立完全非弹性碰撞模型)经过讨论,得到正确结论以后,要求学生据此而正确解答问题,得到结果为:教学资料一维弹性碰撞的普适性结论:新课标人教版选修3-5第15页讨论了一维弹性碰撞中的一种特殊情况(运动的物体撞击静止的物体),本文旨在在此基础之上讨论一般性情况,从而总结出普遍适用的一般性结论。在一光滑水平面上有两个质量分别为、的刚性小球A和B,以初速度、运动,若它们能发生碰撞(为一维弹性碰撞),碰撞后它们的速度分别为和。我们的任务是得出用、、、表达和的公式。、、、是以地面为参考系的,将A和B看作系统。由碰撞过程中系统动量守恒,有……①有弹性碰撞中没有机械能损失,有……②由①得由②得\n将上两式左右相比,可得即或……③碰撞前B相对于A的速度为,碰撞后B相对于A的速度为,同理碰撞前A相对于B的速度为,碰撞后A相对于B的速度为,故③式为或,其物理意义是:碰撞后B相对于A的速度与碰撞前B相对于A的速度大小相等,方向相反;碰撞后A相对于B的速度与碰撞前A相对于B的速度大小相等,方向相反;故有:结论1:对于一维弹性碰撞,若以其中某物体为参考系,则另一物体碰撞前后速度大小不变,方向相反(即以原速率弹回)。联立①②两式,解得……④……⑤下面我们对几种情况下这两个式子的结果做些分析。若,即两个物体质量相等,,表示碰后A的速度变为,B的速度变为。故有:结论2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)。若,即A的质量远大于B的质量这时,,。根据④、⑤两式,有,表示质量很大的物体A(相对于B而言)碰撞前后速度保持不变……⑥若,即A的质量远小于B的质量\n这时,,。根据④、⑤两式,有,表示质量很大的物体B(相对于A而言)碰撞前后速度保持不变……⑦综合⑥⑦,可知:结论3:对于一维弹性碰撞,若其中某物体的质量远大于另一物体的质量,则质量大的物体碰撞前后速度保持不变。至于质量小的物体碰后速度如何,可结合结论1和结论3得出。以为例,由结论3可知,由结论1可知,即,将代入,可得,与上述所得一致。以上结论就是关于一维弹性碰撞的三个普适性结论。练习:如图所示,乒乓球质量为m,弹性钢球质量为M(M>>m),它们一起自高度h高处自由下落,不计空气阻力,设地面上铺有弹性钢板,球与钢板之间的碰撞及乒乓球与钢球之间的碰撞均为弹性碰撞,试计算钢球着地后乒乓球能够上升的最大高度。解析:乒乓球和弹性钢球自状态1自由下落,至弹性钢球刚着地(状态2)时,两者速度相等则弹性钢球跟弹性钢板碰撞后瞬间(状态3),弹性钢球速率仍为v,方向变为竖直向上,紧接着,弹性钢球与乒乓球碰,碰后瞬间(状态4)乒乓球速率变为v′,由结论3可知,弹性钢球与乒乓球碰后弹性钢球速度保持不变(速率仍为v,方向为竖直向上);由结论1可知,弹性钢球与乒乓球碰前瞬间(状态3)乒乓球相对于弹性钢球的速度为2v,方向为竖直向下,弹性钢球与乒乓球碰后瞬间(状态4)乒乓球相对于弹性钢球的速度为2v,方向为竖直向上。则:v′=3v由得:\n第二章原子结构第一节电子的发现与汤姆孙模型三维教学目标1、知识与技能(1)了解阴极射线及电子发现的过程;(2)知道汤姆孙研究阴极射线发现电子的实验及理论推导。2、过程与方法:培养学生对问题的分析和解决能力,初步了解原子不是最小不可分割的粒子。3、情感、态度与价值观:理解人类对原子的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程,根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说。人类就是这样通过光的行为,经过分析和研究,逐渐认识原子的。教学重点:阴极射线的研究。教学难点:汤姆孙发现电子的理论推导。教学方法:实验演示和启发式综合教学法。教学用具:投影片,多媒体辅助教学设备。(一)引入新课很早以来,人们一直认为构成物质的最小粒子是原子,原子是一种不可再分割的粒子。这种认识一直统治了人类思想近两千年。直到19世纪末,科学家对实验中的阴极射线深入研究时,发现了电子,使人类对微观世界有了新的认识。电子的发现是19世纪末、20世纪初物理学三大发现之一。\n(二)进行新课1、阴极射线气体分子在高压电场下可以发生电离,使本来不带电的空气分子变成具有等量正、负电荷的带电粒子,使不导电的空气变成导体。问题:是什么原因让空气分子变成带电粒子的?带电粒子从何而来的?史料:科学家在研究气体导电时发现了辉光放电现象。1858年德国物理学家普吕克尔较早发现了气体导电时的辉光放电现象。德国物理学家戈德斯坦研究辉光放电现象时认为这是从阴极发出的某种射线引起的。所以他把这种未知射线称之为阴极射线。对于阴极射线的本质,有大量的科学家作出大量的科学研究,主要形成了两种观点。(1)电磁波说:代表人物,赫兹。认为这种射线的本质是一种电磁波的传播过程。(2)粒子说:代表人物,汤姆孙。认为这种射线的本质是一种高速粒子流。思考:你能否设计一个实验来进行阴极射线的研究,能通过实验现象来说明这种射线是一种电磁波还是一种高速粒子流。如果出现什么样的现象就可以认为这是一种电磁波,如果出现其他什么样的现象就可以认为这是一种高速粒子流,并能否测定这是一种什么粒子。2、汤姆孙的研究CC1C2lYA¢S+-+磁场英国物理学家汤姆孙在研究阴极射线时发现了电子。实验装置如图所示,从高压电场的阴极发出的阴极射线,穿过C1C2后沿直线打在荧光屏A'上。(1)当在平行极板上加一如图所示的电场,发现阴极射线打在荧光屏上的位置向下偏,则可判定,阴极射线带有负电荷。(2)为使阴极射线不发生偏转,则请思考可在平行极板区域采取什么措施。在平行极板区域加一磁场,且磁场方向必须垂直纸面向外。当满足条件:时,则阴极射线不发生偏转。则:(3)根据带电的阴极射线在电场中的运动情况可知,其速度偏转角为:xL萤幕DSSO电场EAy+-emy1y2+v0v又因为:且则:根据已知量,可求出阴极射线的比荷。思考:\n利用磁场使带电的阴极射线发生偏转,能否根据磁场的特点和带电粒子在磁场中的运动规律来计算阴极射线的比荷?汤姆孙发现,用不同材料的阴极和不同的方法做实验,所得比荷的数值是相等的。这说明,这种粒子是构成各种物质的共有成分。并由实验测得的阴极射线粒子的比荷是氢离子比荷的近两千倍。若这种粒子的电荷量与氢离子的电荷量机同,则其质量约为氢离子质量的近两千分之一。汤姆孙后续的实验粗略测出了这种粒子的电荷量确实与氢离子的电荷量差别不大,证明了汤姆孙的猜测是正确的。汤姆生把新发现的这种粒子称之为电子。电子的电荷量e=1.60217733×10-19C第一次较为精确测量出电子电荷量的是美国物理学家密立根利用油滴实验测量出的。密立根通过实验还发现,电荷具有量子化的特征。即任何电荷只能是e的整数倍。电子的质量m=9.1093897×10-31kg课堂例题例题1:一只阴极射线管,左侧不断有电子射出,若在管的正下方,放一通电直导线AB时,发现射线径迹向下偏,则:()ABA.导线中的电流由A流向BB.导线中的电流由B流向AC.若要使电子束的径迹往上偏,可以通过改变AB中的电流方向来实现D.电子束的径迹与AB中的电流方向无关例题2:有一电子(电荷量为e)经电压为U0的电场加速后,进入两块间距为d,电压为U的平行金属板间,若电子从两板正中间垂直电场方向射入,且正好能穿过电场,求:(1)金属板AB的长度ABU0v0++++----(2)电子穿出电场时的动能第二节原子的核式结构模型三维教学目标1、知识与技能(1)了解原子结构模型建立的历史过程及各种模型建立的依据;(2)知道粒子散射实验的实验方法和实验现象,及原子核式结构模型的主要内容。2、过程与方法(1)通过对粒子散射实验结果的讨论与交流,培养学生对现象的分析中归纳中得出结论的逻辑推理能力;(2)通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学发展过程中的作用;(3)了解研究微观现象。3、情感、态度与价值观(1)通过对原子模型演变的历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神;(2)通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学发展的重要意义。教学重点:(1)引导学生自主思考讨论在于对粒子散射实验的结果分析从而否定葡萄干布丁模型,得出原子的核式结构;\n(2)在教学中渗透和让学生体会物理学研究方法,渗透三个物理学方法:模型方法,黑箱方法和微观粒子的碰撞方法。教学难点:引导学生小组自主思考讨论在于对粒子散射实验的结果分析从而否定葡萄干布丁模型,得出原子的核式结构教学方法:教师启发、引导,学生讨论、交流。教学用具:投影片,多媒体辅助教学设备。(一)引入新课汤姆生发现电子,根据原子呈电中性,提出了原子的葡萄干布丁模型。用动画展示原子葡萄干布丁模型。(二)进行新课1、粒子散射实验原理、装置(1)粒子散射实验原理:问题:汤姆生提出的葡萄干布丁原子模型是否对呢?原子的结构非常紧密,用一般的方法是无法探测它的内部结构的,要认识原子的结构,需要用高速粒子对它进行轰击。而粒子具有足够的能量,可以接近原子中心。它还可以使荧光屏物质发光。如果粒子与其他粒子发生相互作用,改变了运动方向,荧光屏就能够显示出它的方向变化。研究高速的粒子穿过原子的散射情况,是研究原子结构的有效手段。指出:研究原子内部结构要用到的方法:黑箱法、微观粒子碰撞方法。(2)粒子散射实验装置粒子散射实验的装置,主要由放射源、金箔、荧光屏、望远镜和转动圆盘几部分组成。粒子散射实验在课堂上无法直接演示,希望借助多媒体系统,利用动画向学生模拟实验的装置、过程和现象,使学生获得直观的切身体验,留下深刻的印象。通过多媒体重点指出,荧光屏和望远镜能够围绕金箔在一个圆周上运动,从而可以观察到穿透金箔后偏转角度不同的粒子。并且要让学生了解,这种观察是非常艰苦细致的工作,所用的时间也是相当长的。动画展示粒子散射实验装置动画展示实验中,通过显微镜观察到的现象。(3)实验的观察结果明确:入射的粒子分为三部分。大部分沿原来的方向前进,少数发生了较大偏转,极少数发生大角度偏转。2、原子的核式结构的提出三个问题:用汤姆生的葡萄干布丁模型能否解释粒子大角度散射?请同学们根据以下三方面去考虑:(1)粒子出现大角度散射有没有可能是与电子碰撞后造成的?(2)按照葡萄干布丁模型,粒子在原子附近或穿越原子内部后有没有可能发生大角度偏转?(3)你认为原子中的正电荷应如何分布,才有可能造成粒子的大角度偏转?为什么?小结:对于问题1、2:按照葡萄干布丁模型,①碰撞前后,质量大的粒子速度几乎不变。只可能是电子的速度发生大的改变,因此不可能出现反弹的现象,即使是非对心碰撞,也不会有大角散射。②对于粒子在原子附近时由于原子呈中性,与粒子之间没有或很小的库仑力的作用,正电荷在原子内部均匀的分布,粒子穿过原子时,由于原子两侧正电荷将对它的斥力有相当大一部分互相抵消,使粒子偏转的力不会很大所以粒子大角度散射说明葡萄干布丁模型不符合原子结构的实际情况。对于问题3:讨论、推理、分析得到卢瑟福的原子结构模型。小结:实验中发现极少数粒子发生了大角度偏转,甚至反弹回来,表明这些粒子在原子中某个地方受到了质量、电量均比它本身大得多的物体的作用,可见原子中的正电荷、质量应都集中在一个中心上。①绝大多数粒子不偏移→原子内部绝大部分是“空”的。②少数粒子发生较大偏转→原子内部有“核”存在。\n③极少数粒子被弹回  表明:作用力很大;质量很大;电量集中。点评:教师进行科学研究方法教育:模型法(实验现象)→(分析推理)→(构造模型)(通过汤姆生的原子结构模型到卢瑟福的原子的核式结构模型的建立,既渗透科学探究的因素教学,又进行了模型法的教学,并将卢瑟福的原子的核式结构模型与行星结构相类比,指出大自然的和谐统一的美,渗透哲学教育。通过学生对这三个问题的讨论与交流,顺理成章地否定了葡萄干布丁模型,并开始建立新的模型。希望这一部分由学生自己完成,教师总结,总结时,突出汤姆生原子模型与粒子散射实验之间的矛盾,可以将粒子分别穿过葡萄干布丁模型和核式结构模型的不同现象用动画模拟,形成强烈的对比,突破难点)得到卢瑟福的原子的核式结构模型后再展示立体动画粒子散射模型,使学生有更清晰的直观形象、生动的认识。3、原子核的电荷与大小关于原子的大小应该让学生有个数量级的概念,即原子的半径在10-10m左右,原子核的大小在10-15~10-14m左右,原子核的半径只相当于原子半径的万分之一,体积只相当于原子体积的万亿分之一。为了加深学生的印象,可举一些较形象的比喻或按比例画些示意图,同时通过表格展示,对比。半径大小(数量级)类比原子10-10m足球场原子核10-15m~10-14m一枚硬币附1:教学主线设计\n第三节波尔的原子模型三维教学目标1、知识与技能(1)了解玻尔原子理论的主要内容;(2)了解能级、能量量子化以及基态、激发态的概念。2、过程与方法:通过玻尔理论的学习,进一步了解氢光谱的产生。3、情感、态度与价值观:培养我们对科学的探究精神,养成独立自主、勇于创新的精神。教学重点:玻尔原子理论的基本假设。教学难点:玻尔理论对氢光谱的解释。教学方法:教师启发、引导,学生讨论、交流。(一)引入新课提问:(1)α粒子散射实验的现象是什么?(2)原子核式结构学说的内容是什么?(3)卢瑟福原子核式结构学说与经典电磁理论的矛盾?\n电子绕核运动(有加速度)辐射电磁波频率等于绕核运行的频率能量减少、轨道半径减少频率变化电子沿螺旋线轨道落入原子核原子光谱应为连续光谱(矛盾:实际上是不连续的亮线)原子是不稳定的(矛盾:实际上原子是稳定的)为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。(二)进行新课1、玻尔的原子理论(1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为En)跃迁到另一种定态(设能量为Em)时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即(h为普朗克恒量)(本假设针对线状谱提出)(3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2、玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径:n=1,2,3……能量:n=1,2,3……式中r1、E1、分别代表第一条(即离核最近的)可能轨道的半径和电子在这条轨道上运动时的能量,rn、En分别代表第n条可能轨道的半径和电子在第n条轨道上运动时的能量,n是正整数,叫量子数。3、氢原子的能级图从玻尔的基本假设出发,运用经典电磁学和经典力学的理论,可以计算氢原子中电子的可能轨道半径和相应的能量。\n(1)氢原子的大小:氢原子的电子的各条可能轨道的半径rn:rn=n2r1,r1代表第一条(离核最近的一条)可能轨道的半径r1=0.53×10-10m例如:n=2,r2=2.12×10-10m(2)氢原子的能级:原子在各个定态时的能量值En称为原子的能级。它对应电子在各条可能轨道上运动时的能量En(包括动能和势能)En=E1/n2n=1,2,3,······E1代表电子在第一条可能轨道上运动时的能量,E1=-13.6eV注意:计算能量时取离核无限远处的电势能为零,电子带负电,在正电荷的场中为负值,电子的动能为电势能绝对值的一半,总能量为负值。例如:n=2,E2=-3.4eV,n=3,E3=-1.51eV,n=4,E4=-0.85eV,……氢原子的能级图如图所示:4、玻尔理论对氢光谱的解释(1)基态和激发态基态:在正常状态下,原子处于最低能级,这时电子在离核最近的轨道上运动,这种定态,叫基态。激发态:原子处于较高能级时,电子在离核较远的轨道上运动,这种定态,叫激发态。课堂练习(1)对玻尔理论的下列说法中,正确的是(ACD)A.继承了卢瑟福的原子模型,但对原子能量和电子轨道引入了量子化假设B.对经典电磁理论中关于“做加速运动的电荷要辐射电磁波”的观点表示赞同C.用能量转化与守恒建立了原子发光频率与原子能量变化之间的定量关系D.玻尔的两个公式是在他的理论基础上利用经典电磁理论和牛顿力学计算出来的(2)下面关于玻尔理论的解释中,不正确的说法是(C)A.原子只能处于一系列不连续的状态中,每个状态都对应一定的能量B.原子中,虽然核外电子不断做加速运动,但只要能量状态不改变,就不会向外辐射能量C.原子从一种定态跃迁到另一种定态时,一定要辐射一定频率的光子D.原子的每一个能量状态都对应一个电子轨道,并且这些轨道是不连续的(3)根据玻尔理论,氢原子中,量子数N越大,则下列说法中正确的是(ACD)A.电子轨道半径越大B.核外电子的速率越大C.氢原子能级的能量越大D.核外电子的电势能越大(4)根据玻尔的原子理论,原子中电子绕核运动的半径(D)\nA.可以取任意值B.可以在某一范围内取任意值C.可以取一系列不连续的任意值D.是一系列不连续的特定值(5)按照玻尔理论,一个氢原子中的电子从一半径为ra的圆轨道自发地直接跃迁到一半径为rb的圆轨道上,已知ra>rb,则在此过程中(C)A.原子要发出一系列频率的光子B.原子要吸收一系列频率的光子C.原子要发出某一频率的光子D.原子要吸收某一频率的光子第四节氢原子光谱与能级结构三维教学目标1、知识与技能(1)了解光谱的定义和分类;(2)了解氢原子光谱的实验规律,知道巴耳末系;(3)了解经典原子理论的困难。2、过程与方法:通过本节的学习,感受科学发展与进步的坎坷。3、情感、态度与价值观:培养我们探究科学、认识科学的能力,提高自主学习的意识。教学重点:氢原子光谱的实验规律。教学难点:经典理论的困难。教学方法:教师启发、引导,学生讨论、交流。教学用具:投影片,多媒体辅助教学设备。(一)引入新课粒子散射实验使人们认识到原子具有核式结构,但电子在核外如何运动呢?它的能量怎样变化呢?通过这节课的学习我们就来进一步了解有关的实验事实。(二)进行新课1、光谱(结合课件展示)早在17世纪,牛顿就发现了日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱。(如图所示)光谱是电磁辐射(不论是在可见光区域还是在不可见光区域)的波长成分和强度分布的记录。有时只是波长成分的记录。(1)发射光谱物体发光直接产生的光谱叫做发射光谱。发射光谱可分为两类:连续光谱和明线光谱。问题:什么是连续光谱和明线光谱?(连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。只含有一些不连续的亮线的光谱叫做明线光谱。明线光谱中的亮线叫谱线,各条谱线对应不同波长的光)炽热的固体、液体和高压气体的发射光谱是连续光谱。例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。如图所示。\n稀薄气体或金属的蒸气的发射光谱是明线光谱。明线光谱是由游离状态的原子发射的,所以也叫原子的光谱。实践证明,原子不同,发射的明线光谱也不同,每种原子只能发出具有本身特征的某些波长的光,因此明线光谱的谱线也叫原子的特征谱线。如图所示。(2)吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。各种原子的吸收光谱中的每一条暗线都跟该种原子的原子的发射光谱中的一条明线相对应。这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光。因此吸收光谱中的暗谱线,也是原子的特征谱线。太阳的光谱是吸收光谱。如图所示。课件展示:氢、钠的光谱、太阳光谱:投影各种光谱的特点及成因知识结构图:\n(3)光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定的化学组成。这种方法叫做光谱分析。原子光谱的不连续性反映出原子结构的不连续性,所以光谱分析也可以用于探索原子的结构。2、氢原子光谱的实验规律氢原子是最简单的原子,其光谱也最简单。(课件展示)4、玻尔理论对氢光谱的解释(1)基态和激发态基态:在正常状态下,原子处于最低能级,这时电子在离核最近的轨道上运动,这种定态,叫基态。激发态:原子处于较高能级时,电子在离核较远的轨道上运动,这种定态,叫激发态。(2)原子发光:原子从基态向激发态跃迁的过程是吸收能量的过程。原子从较高的激发态向较低的激发态或基态跃迁的过程,是辐射能量的过程,这个能量以光子的形式辐射出去,吸收或辐射的能量恰等于发生跃迁的两能级之差。说明:氢原子中只有一个核外电子,这个电子在某个时刻只能在某个可能轨道上,或者说在某个时间内,由某轨道跃迁到另一轨道——\n可能情况只有一种。可是,通常容器盛有的氢气,总是千千万万个原子在一起,这些原子核外电子跃迁时,就会有各种情况出现了。但是这些跃迁不外乎是能级图中表示出来的那些情况。(1)夫兰克—赫兹实验的历史背景及意义1911年,卢瑟福根据α粒子散射实验,提出了原子核式结构模型。1913年,玻尔将普朗克量子假说运用到原子核式结构模型,建立了与经典理论相违背的两个重要概念:原子定态能级和能级跃迁概念。电子在能级之间跃迁时伴随电磁波的吸收和发射,电磁波频率的大小取决于原子所处两定态能级间的能量差。随着英国物理学家埃万斯对光谱的研究,玻尔理论被确立。但是任何重要的物理规律都必须得到至少两种独立的实验方法的验证。随后,在1914年,德国科学家夫兰克和他的助手赫兹采用电子与稀薄气体中原子碰撞的方法(与光谱研究相独立),简单而巧妙地直接证实了原子能级的存在,从而为玻尔原子理论提供了有力的证据。1925年,由于他二人的卓越贡献,他们获得了当年的诺贝尔物理学奖(1926年于德国洛丁根补发)。夫兰克-赫兹实验至今仍是探索原子内部结构的主要手段之一。所以,在近代物理实验中,仍把它作为传统的经典实验。(2)夫兰克—赫兹实验的理论基础根据玻尔的原子理论,原子只能处于一系列不连续的稳定状态之中,其中每一种状态相应于一定的能量值En(n=1,2,3‥),这些能量值称为能级。最低能级所对应的状态称为基态,其它高能级所对应的态称为激发态。当原子从一个稳定状态过渡到另一个稳定状态时就会吸收或辐射一定频率的电磁波,频率大小决定于原子所处两定态能级间的能量差。(h为普朗克恒量)本实验中是利用一定能量的电子与原子碰撞交换能量而实现,并满足能量选择定则:(V为激发电位)夫兰克-赫兹实验玻璃容器充以需测量的气体,本实验用的是汞。电子由阴级K发出,K与栅极G之间有加速电场,G与接收极A之间有减速电场。当电子在KG空间经过加速、碰撞后,进入KG空间时,能量足以冲过减速电场,就成为电流计的电流。\n(3)实验原理改进的夫兰克-赫兹管的基本结构如下图所示。电子由阴极K发出,阴极K和第一栅极G1之间的加速电压VG1K及与第二栅极G2之间的加速电压VG2K使电子加速。在板极A和第二栅极G2之间可设置减速电压VG2A。设汞原子的基态能量为E0,第一激发态的能量为E1,初速为零的电子在电位差为V的加速电场作用下,获得能量为eV,具有这种能量的电子与汞原子发生碰撞,当电子能量eVνc时,电子才能逸出金属表面;当入射光频率ν<νc时,无论光强多大也无电子逸出金属表面。③光电效应是瞬时的。从光开始照射到光电子逸出所需时间<10-9s。3、光电效应解释中的疑难经典理论无法解释光电效应的实验结果。经典理论认为,按照经典电磁理论,入射光的光强越大,光波的电场强度的振幅也越大,作用在金属中电子上的力也就越大,光电子逸出的能量也应该越大。也就是说,光电子的能量应该随着光强度的增加而增大,不应该与入射光的频率有关,更不应该有什么截止频率。光电效应实验表明:饱和电流不仅与光强有关而且与频率有关,光电子初动能也与频率有关。只要频率高于极限频率,即使光强很弱也有光电流;频率低于极限频率时,无论光强再大也没有光电流。光电效应具有瞬时性。而经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。4、爱因斯坦的光量子假设(1)内容光不仅在发射和吸收时以能量为hν的微粒形式出现,而且在空间传播时也是如此。也就是说,频率为ν的光是由大量能量为E=hν的光子组成的粒子流,这些光子沿光的传播方向以光速c运动。(2)爱因斯坦光电效应方程在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子逸出功W0,另一部分变为光电子逸出后的动能Ek。由能量守恒可得出:W0为电子逸出金属表面所需做的功,称为逸出功。Wk为光电子的最大初动能。\n(3)爱因斯坦对光电效应的解释①光强大,光子数多,释放的光电子也多,所以光电流也大。②电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。③从方程可以看出光电子初动能和照射光的频率成线性关系④从光电效应方程中,当初动能为零时,可得极限频率:爱因斯坦光子假说圆满解释了光电效应,但当时并未被物理学家们广泛承认,因为它完全违背了光的波动理论。5、光电效应理论的验证美国物理学家密立根,花了十年时间做了“光电效应”实验,结果在1915年证实了爱因斯坦光电效应方程,h的值与理论值完全一致,又一次证明了“光量子”理论的正确。6、展示演示文稿资料:爱因斯坦和密立根由于爱因斯坦提出的光子假说成功地说明了光电效应的实验规律,荣获1921年诺贝尔物理学奖。密立根由于研究基本电荷和光电效应,特别是通过著名的油滴实验,证明电荷有最小单位。获得1923年诺贝尔物理学奖。点评:应用物理学家的历史资料,不仅有真实感,增强了说服力,同时也能对学生进行发放教育,有利于培养学生的科学态度和科学精神,激发学生的探索精神。光电效应在近代技术中的应用(1)光控继电器可以用于自动控制,自动计数、自动报警、自动跟踪等。(2)光电倍增管可对微弱光线进行放大,可使光电流放大105~108倍,灵敏度高,用在工程、天文、科研、军事等方面。第二节康普顿效应三维教学目标\n1、知识与技能(1)了解康普顿效应,了解光子的动量(2)了解光既具有波动性,又具有粒子性;(3)知道实物粒子和光子一样具有波粒二象性;(4)了解光是一种概率波。2、过程与方法:(1)了解物理真知形成的历史过程;(2)了解物理学研究的基础是实验事实以及实验对于物理研究的重要性;(3)知道某一物质在不同环境下所表现的不同规律特性。3、情感、态度与价值观:领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。教学重点:实物粒子和光子一样具有波粒二象性教学难点:实物粒子的波动性的理解。教学方法:教师启发、引导,学生讨论、交流。教学用具:投影片,多媒体辅助教学设备(一)引入新课提问:前面我们学习了有关光的一些特性和相应的事实表现,那么我们究竟怎样来认识光的本质和把握其特性呢?(光是一种物质,它既具有粒子性,又具有波动性。在不同条件下表现出不同特性,分别举出有关光的干涉衍射和光电效应等实验事实)。我们不能片面地认识事物,能举出本学科或其他学科或生活中类似的事或物吗?(二)进行新课1、康普顿效应(1)光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射。(2)康普顿效应1923年康普顿在做X射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长和散射物质都无关。(3)康普顿散射的实验装置与规律:按经典电磁理论:如果入射X光是某种波长的电磁波,散射光的波长是不会改变的!散射中出现的现象,称为康普顿散射。康普顿散射曲线的特点:①除原波长外出现了移向长波方向的新的散射波长\n②新波长随散射角的增大而增大。波长的偏移为波长的偏移只与散射角有关,而与散射物质种类及入射的X射线的波长无关,=0.0241Å=2.41×10-3nm(实验值)称为电子的Compton波长只有当入射波长与可比拟时,康普顿效应才显著,因此要用X射线才能观察到康普顿散射,用可见光观察不到康普顿散射。(4)经典电磁理论在解释康普顿效应时遇到的困难①根据经典电磁波理论,当电磁波通过物质时,物质中带电粒子将作受迫振动,其频率等于入射光频率,所以它所发射的散射光频率应等于入射光频率。②无法解释波长改变和散射角的关系。(5)光子理论对康普顿效应的解释①若光子和外层电子相碰撞,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长。②若光子和束缚很紧的内层电子相碰撞,光子将与整个原子交换能量,由于光子质量远小于原子质量,根据碰撞理论,碰撞前后光子能量几乎不变,波长不变。③因为碰撞中交换的能量和碰撞的角度有关,所以波长改变和散射角有关。(6)康普顿散射实验的意义①有力地支持了爱因斯坦“光量子”假设;②首次在实验上证实了“光子具有动量”的假设;③证实了在微观世界的单个碰撞事件中,动量和能量守恒定律仍然是成立的。2、光的波粒二象性讲述光的波粒二象性,进行归纳整理。(1)我们所学的大量事实说明:光是一种波,同时也是一种粒子,光具有波粒二象性。光的分立性和连续性是相对的,是不同条件下的表现,光子的行为服从统计规律。(2)光子在空间各点出现的概率遵从波动规律,物理学中把光波叫做概率波。3、光的波动性与粒子性是不同条件下的表现:大量光子行为显示波动性;个别光子行为显示粒子性;光的波长越长,波动性越强;光的波长越短,粒子性越强。光的波动性不是光子之间相互作用引起的,是光子本身的一种属性。例题:已知每秒从太阳射到地球上垂直于太阳光的每平方米截面上的辐射能为1.4×103\nJ,其中可见光部分约占45%,假设认为可见光的波长均为0.55μm,太阳向各个方向的辐射是均匀的,日地之间距离为R=1.5×1011m,估算出太阳每秒辐射出的可见光的光子数。(保留两位有效数字)第三节实物粒子的波粒二象性三维教学目标1、知识与技能(1)了解光既具有波动性,又具有粒子性;(2)知道实物粒子和光子一样具有波粒二象性;(3)知道德布罗意波的波长和粒子动量关系。(4)了解不确定关系的概念和相关计算;2、过程与方法(1)了解物理真知形成的历史过程;(2)了解物理学研究的基础是实验事实以及实验对于物理研究的重要性;(3)知道某一物质在不同环境下所表现的不同规律特性。3、情感、态度与价值观(1)通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正;(2)通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度;(3)通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。教学重点:实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。教学难点:实物粒子的波动性的理解。教学方法:学生阅读-讨论交流-教师讲解-归纳总结。教学用具:课件:PP演示文稿(科学家介绍,本节知识结构)。多媒体教学设备(一)引入新课提问:前面我们学习了有关光的一些特性和相应的事实表现,那么我们究竟怎样来认识光的本质和把握其特性呢?(光是一种物质,它既具有粒子性,又具有波动性。在不同条件下表现出不同特性,分别举出有关光的干涉衍射和光电效应等实验事实)。我们不能片面地认识事物,能举出本学科或其他学科或生活中类似的事或物吗?(二)进行新课1、光的波粒二象性讲述光的波粒二象性,进行归纳整理。(1)我们所学的大量事实说明:光是一种波,同时也是一种粒子,光具有波粒二象性。光的分立性和连续性是相对的,是不同条件下的表现,光子的行为服从统计规律。(2)光子在空间各点出现的概率遵从波动规律,物理学中把光波叫做概率波。2、光子的能量与频率以及动量与波长的关系。\n=提问:作为物质的实物粒子(如电子、原子、分子等)是否也具有波动性呢?3、粒子的波动性提问:谁大胆地将光的波粒二象性推广到实物粒子?只是因为他大胆吗?(法国科学家德布罗意考虑到普朗克能量子和爱因斯坦光子理论的成功,大胆地把光的波粒二象性推广到实物粒子。)(1)德布罗意波:实物粒子也具有波动性,这种波称之为物质波,也叫德布罗意波。(2)物质波波长:=提问:各物理量的意义?(为德布罗意波长,h为普朗克常量,p为粒子动量)阅读课本有关内容,为什么德布罗意波观点很难通过实验验证?又是在怎样的条件下使实物粒子的波动性得到了验证?4、物质波的实验验证提问:粒子波动性难以得到验证的原因?(宏观物体的波长比微观粒子的波长小得多,这在生活中很难找到能发生衍射的障碍物,所以我们并不认为它有波动性,作为微观粒子的电子,其德布罗意波波长为10-10m数量级,找与之相匹配的障碍物也非易事)例题:某电视显像管中电子的运动速度是4.0×107m/s;质量为10g的一颗子弹的运动速度是200m/s。分别计算它们的德布罗意波长。(根据公式计算得1.8×10-11m和3.3×10-34m)电子波动性的发现者——戴维森和小汤姆逊电子波动性的发现,使得德布罗意由于提出实物粒子具有波动性这一假设得以证实,并因此而获得1929年诺贝尔物理学奖,而戴维森和小汤姆逊由于发现了电子的波动性也同获1937年诺贝尔物理学奖。阅读有关物理学历史资料,了解物理学有关知识的形成建立和发展的真是过程。(应用物理学家的历史资料,不仅有真实感,增强了说服力,同时也能对学生进行发放教育,有利于培养学生的科学态度和科学精神,激发学生的探索精神)电子衍射实验:1927年,两位美国物理学家使电子束投射到镍的晶体上,得到了电子束的衍射图案,从而证实了德布罗意的假设。除了电子以外,后来还陆续证实了质子、中子以及原子、分子的波动性。提问:衍射现象对高分辨率的显微镜有影响否?如何改进?(显微镜的分辨本领)5、德布罗意波的统计解释1926年,德国物理学玻恩(Born,1882--1972)提出了概率波,认为个别微观粒子在何处出现有一定的偶然性,但是大量粒子在空间何处出现的空间分布却服从一定的统计规律。6、经典波动与德布罗意波(物质波)的区别经典的波动(如机械波、电磁波等)是可以测出的、实际存在于空间的一种波动。而德布罗意波(物质波)是一种概率波。简单的说,是为了描述微观粒子的波动性而引入的一种方法。7、不确定度关系(uncertaintyrelatoin)\n经典力学:运动物体有完全确定的位置、动量、能量等。微观粒子:位置、动量等具有不确定量(概率)。(1)电子衍射中的不确定度如图所示,一束电子以速度v沿oy轴射向狭缝。电子在中央主极大区域出现的几率最大。在经典力学中,粒子(质点)的运动状态用位置坐标和动量来描述,而且这两个量都可以同时准确地予以测定。然而,对于具有二象性的微观粒子来说,是否也能用确定的坐标和确定的动量来描述呢?下面我们以电子通过单缝衍射为例来进行讨论。设有一束电子沿oy轴射向屏AB上缝宽为a的狭缝,于是,在照相底片CD上,可以观察到如下图所示的衍射图样。如果我们仍用坐标x和动量p来描述这一电子的运动状态,那么,我们不禁要问:一个电子通过狭缝的瞬时,它是从缝上哪一点通过的呢?也就是说,电子通过狭缝的瞬时,其坐标x为多少?显然,这一问题,我们无法准确地回答,因为此时该电子究竟在缝上哪一点通过是无法确定的,即我们不能准确地确定该电子通过狭缝时的坐标。研究表明:对于第一衍射极小,式中为电子的德布罗意波长。电子的位置和动量分别用x和p来表示。电子通过狭缝的瞬间,其位置在x方向上的不确定量为,同一时刻,由于衍射效应,粒子的速度方向有了改变,缝越小,动量的分量px变化越大。分析计算可得:式中h为普朗克常量。这就是著名的不确定性关系,简称不确定关系。上式表明:①许多相同粒子在相同条件下实验,粒子在同一时刻并不处在同一位置。②用单个粒子重复,粒子也不在同一位置出现。\n例题解析:例1:一颗质量为10g的子弹,具有200m·s-1的速率,若其动量的不确定范围为动量的0.01%(这在宏观范围是十分精确的了),则该子弹位置的不确定量范围为多大?解:子弹的动量动量的不确定范围由不确定关系式,得子弹位置的不确定范围我们知道,原子核的数量级为10-15m,所以,子弹位置的不确定范围是微不足道的。可见子弹的动量和位置都能精确地确定,不确定关系对宏观物体来说没有实际意义。例2:一电子具有200m/s的速率,动量的不确定范围为动量的0.01%(这已经足够精确了),则该电子的位置不确定范围有多大?解 :电子的动量为:动量的不确定范围由不确定关系式,得电子位置的不确定范围我们知道原子大小的数量级为10-10m,电子则更小。在这种情况下,电子位置的不确定范围比原子的大小还要大几亿倍,可见企图精确地确定电子的位置和动量已是没有实际意义。8、微观粒子和宏观物体的特性对比宏观物体微观粒子具有确定的坐标和动量,可用牛顿力学描述。没有确定的坐标和动量,需用量子力学描述。有连续可测的运动轨道,可追踪各个物体的运动轨迹。有概率分布特性,不可能分辨出各个粒子的轨迹。体系能量可以为任意的、连续变化的数值。能量量子化。不确定度关系无实际意义遵循不确定度关系9、不确定关系的物理意义和微观本质(1)物理意义:\n微观粒子不可能同时具有确定的位置和动量。粒子位置的不确定量越小,动量的不确定量就越大,反之亦然。(2)微观本质:是微观粒子的波粒二象性及粒子空间分布遵从统计规律的必然结果。不确定关系式表明:①微观粒子的坐标测得愈准确(),动量就愈不准确();微观粒子的动量测得愈准确(),坐标就愈不准确()。但这里要注意,不确定关系不是说微观粒子的坐标测不准;也不是说微观粒子的动量测不准;更不是说微观粒子的坐标和动量都测不准;而是说微观粒子的坐标和动量不能同时测准。②为什么微观粒子的坐标和动量不能同时测准?这是因为微观粒子的坐标和动量本来就不同时具有确定量。这本质上是微观粒子具有波粒二象性的必然反映。由以上讨论可知,不确定关系是自然界的一条客观规律,不是测量技术和主观能力的问题。③不确定关系提供了一个判据:当不确定关系施加的限制可以忽略时,则可以用经典理论来研究粒子的运动。当不确定关系施加的限制不可以忽略时,那只能用量子力学理论来处理问题。第四节“基本粒子”与恒星演化三维教学目标1、知识与技能(1)了解构成物质的“基本粒子”及粒子物理的发展史;(2)初步了解宇宙的演化过程及宇宙与粒子的和谐统一。2、过程与方法(1)感知人类(科学家)探究宇宙奥秘的过程和方法;(2)能够突破传统思维重新认识客观物质世界。3、情感、态度与价值观(1)让学生真正感受到自然的和谐统一并深知创建和谐社会的必要性;(2)培养学生的科学探索精神。教学重点:了解构成物质的粒子和宇宙演化过程教学难点:各种微观粒子模型的理解教学方法:教师启发、引导,学生讨论、交流。(一)引入新课宇宙的起源一直是天文学中困难而又有启发性的问题。宇宙学中大爆炸论的基本观点是宇宙正在膨胀,要了解宇宙更早期的情况,我们必须研究组成物质的基本粒子。问题1:现在我们所知的构成物体的最小微粒是什么?(构成物体的最小微粒为“原子”,不可再分)其实直到19世纪末,人们都认为原子是组成物质不可分的最小微粒。20世纪初人们发现了电子,并认为原子并不是不可以再分,而且提出了原子结构模型的研究。问题2:现在我们认为原子是什么结构模型,由什么组成?现在我们认为原子是核式结构,说明原子可再分,原子核由质子与中子构成。(二)进行新课\n1、“基本”粒子“不”基本1897年汤姆生发现电子,1911年卢瑟福提出原子的核式结构。继而我们发现了光子,并认为“光子、电子、质子、中子”是组成物质的不可再分的粒子,所以把它们叫“基本粒子”。那么随着科学技术的发展“它们”还是不是真正意义上的“基本”粒子呢?2、发现新粒子20世纪30年代以来,人们对宇宙线的研究中发现了一些新的粒子。看教材(103页“发现新粒子”)思考:(1)从宇宙线中发现了哪些粒子?这些粒子有什么特点?(2)通过科学核物理实验又发现了哪些粒子?(3)什么是反粒子?(4)现在可以将粒子分为哪几类?提示:(1)1932年发现正电子;1937年发现μ子;1947年发现K介子与π介子。(2)实验中发现了许多反粒子,现在发现的粒子多达400多种。(3)许多粒子都存在着质量与它相同而电荷及其他一些物理性质相反的粒子,叫做反粒子。(4)按粒子与各种相互作用的关系,可分为三大类:强子、轻子和媒介子。说明:强子:是参与强相互作用的粒子。(强子又分为介子和重子)轻子:轻子是不参与强相互作用的粒子。媒介子:传递各种相互作用的粒子。举例:强子:质子、中子…轻子:电子、电子中微子媒介子:光子、胶子…激发学生了解相关知识,更进一步了解这个世界。比较三类粒子,让学生形成直观的认识,知道三类粒子的主要作用。3、夸克模型问提:上述粒子是不是最小单位,有没有内部结构呢?看教材(第104页“夸克模型”)1964年提出夸克模型,认为强子由更基本的成分组成,这种成分叫做夸克(quark)。夸克模型经过几十年的发展,已被多数物理学家接受。那么,现代科学认为夸克有哪几种?有什么特征?提示:(1)上夸克、下夸克、奇异夸克、粲夸克、底夸克、顶夸克。(2)夸克带电荷为元电荷的或倍点评:提示学生现代科学不仅发现6种夸克而且发现了反夸克存在的证据。使学生知道知识的学习和科学的探究是无止境的。提示:科学家们还未捕捉到自由的夸克。夸克不能以自由的状态单个出现,这种性质称为夸克的“禁闭”。能否解放被禁闭的夸克,是物理学发展面临的一个重大课题。夸克模型的提出是物理学发展中的一个重大突破,它指出电子电荷不再是电荷的最小单元,即存在分数电荷。而另一方面也说明科学正由于一个一个的突破才使得科学得到进一步的发展。例1:已知π+介子、π-介子都是由一个夸克(夸克u或夸克d)和一个反夸克(反夸克或反夸克\n)组成的,它们的带电荷量如下表所示,表中e为元电荷。π+π-ud带电量+e-e下列说法正确的是()(2005全国)A.π+由u和组成B.π+由和d组成C.π-由u和组成D.π-由和d组成解析:根据各种粒子带电情况,π的带应为u和d(“+”或“-”)所以选“AD”归纳:基本粒子不基本(列出框架图)点评:逐步突现物质世界的微观与宏观的和谐统一。粒子媒介子轻子(6种)强子参与强作用光子(传递电磁相互作用)胶子(传递强相互作用)电子电子中微子μ子和μ子中微子子和子中微子质子中子介子超子上夸克下夸克奇夸克粲夸克底夸克顶夸克夸克4、宇宙的演化、恒星的演化前面我们提到要了解宇宙起源需了解物质的组成的粒子,这是因为在物理学中研究微观世界的粒子物理、量子理论,与研究宇宙的理论竟然相互沟通、相互支撑。阅读教材(第105页“宇宙演化”)并要求学生初步了解宇宙演化的发展过程。(1)宇宙演化过程和恒星演化过程宇宙大爆炸后,“粒子家族”(宇宙形成之初):10-44秒后,温度1032K,产生夸克、轻子、胶子等→10-6秒后温度1013K,夸克构成了质子和中子等(强子时代)→温度为1011K时,少量夸克,光子、大量中微子和电子存在(轻子时代)→温度109K时进入核合成时代→温度降到3000K时,电子与质子复合成氢原子→冷却,出现了宇宙尘埃密集尘埃→星云团开始发光→一颗恒星诞生。恒星收缩升温→热核反应成氦→氢大部分聚变为氦→收缩→氦聚合成碳→…(类似)直到产生铁元素。恒星最后的归宿:恒星质量小于太阳1.4倍→白矮星\n恒星质量是太阳1.4~2倍→中子性5、课堂练习(可选为例题)练习1:目前普遍认为,质子和中子都由被称为μ夸克和d夸克的两类夸克组成,μ夸克带电量为2e/3,d夸克带电量为-e/3,e为元电荷,则下列论断可能的是(B)A.质子由1个μ夸克和1个d夸克组成,中子由1个μ夸克和2个d夸克组成B.质子由2个μ夸克和1个d夸克组成,中子由1个μ夸克和2个d夸克组成C.质子由1个μ夸克和2个d夸克组成,中子由2个μ夸克和1个d夸克组成D.质子由2个μ夸克和1个d夸克组成,中子由1个μ夸克和1个d夸克组成练习2:介子衰变方程为:→π-+πo其中介子和π-介子带负的基元电荷,πo介子不带电,如图所示,一个介子沿垂直于磁场的方向射入匀强磁场中,其轨迹为圆弧Ap,衰变后产生的π-介子的轨迹为圆弧pB,两轨迹在p点相切,它们半径Rk-与Rπ-之比为2:1(πo介子的轨迹未画出)由此可知π-的动量大小与πo的动量大小之比为(C)A.1:1B.1:2C.1:3D.1:6袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈

相关文档