• 414.50 KB
  • 2022-08-17 发布

高中数学 正弦、余弦函数的性质(一)教案 新人教A版 教案

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
高中数学人教A版精品教案集:正弦、余弦函数的性质(一)教学目的:知识目标:要求学生能理解周期函数,周期函数的周期和最小正周期的定义;能力目标:掌握正、余弦函数的周期和最小正周期,并能求出正、余弦函数的最小正周期。德育目标:让学生自己根据函数图像而导出周期性,领会从特殊推广到一般的数学思想,体会三角函数图像所蕴涵的和谐美,激发学生学数学的兴趣。教学重点:正、余弦函数的周期性教学难点:正、余弦函数周期性的理解与应用授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:1.问题:(1)今天是星期二,则过了七天是星期几?过了十四天呢?……(2)物理中的单摆振动、圆周运动,质点运动的规律如何呢?2.观察正(余)弦函数的图象总结规律:自变量––函数值正弦函数性质如下:\n(观察图象)1°正弦函数的图象是有规律不断重复出现的;2°规律是:每隔2p重复出现一次(或者说每隔2kp,kÎZ重复出现)3°这个规律由诱导公式sin(2kp+x)=sinx可以说明结论:象这样一种函数叫做周期函数。文字语言:正弦函数值按照一定的规律不断重复地取得;符号语言:当增加()时,总有.也即:(1)当自变量增加时,正弦函数的值又重复出现;(2)对于定义域内的任意,恒成立。余弦函数也具有同样的性质,这种性质我们就称之为周期性。二、讲解新课:1.周期函数定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有:f(x+T)=f(x)那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期。问题:(1)对于函数,有,能否说是它的周期?(2)正弦函数,是不是周期函数,如果是,周期是多少?(,且)(3)若函数的周期为,则,也是的周期吗?为什么?(是,其原因为:)2、说明:1°周期函数xÎ定义域M,则必有x+TÎM,且若T>0则定义域无上界;T<0则定义域无下界;2°“每一个值”只要有一个反例,则f(x)就不为周期函数(如f(x0+t)¹f(x0))3°T往往是多值的(如y=sinx2p,4p,…,-2p,-4p,…都是周期)周期T中最小的正数叫做f(x)的最小正周期(有些周期函数没有最小正周期)y=sinx,y=cosx的最小正周期为2p(一般称为周期)从图象上可以看出,;,的最小正周期为;\n判断:是不是所有的周期函数都有最小正周期?(没有最小正周期)3、例题讲解例1求下列三角函数的周期:①②(3),.解:(1)∵,∴自变量只要并且至少要增加到,函数,的值才能重复出现,所以,函数,的周期是.(2)∵,∴自变量只要并且至少要增加到,函数,的值才能重复出现,所以,函数,的周期是.(3)∵,∴自变量只要并且至少要增加到,函数,的值才能重复出现,所以,函数,的周期是.说明:(1)一般结论:函数及函数,(其中为常数,且,)的周期;(2)若,例如:①,;②,;③,.则这三个函数的周期又是什么?一般结论:函数及函数,的周期例2先化简,再求函数的周期 ① ② ③证明函数的一个周期为,并求函数的值域;例3求下列三角函数的周期:\n1°y=sin(x+)2°y=cos2x3°y=3sin(+)解:1°令z=x+而sin(2p+z)=sinz即:f(2p+z)=f(z)f[(x+2)p+]=f(x+)∴周期T=2p2°令z=2x∴f(x)=cos2x=cosz=cos(z+2p)=cos(2x+2p)=cos[2(x+p)]即:f(x+p)=f(x)∴T=p3°令z=+则:f(x)=3sinz=3sin(z+2p)=3sin(++2p)=3sin()=f(x+4p)∴T=4p小结:形如y=Asin(ωx+φ)(A,ω,φ为常数,A¹0,xÎR)周期T=y=Acos(ωx+φ)也可同法求之例4求下列函数的周期:1°y=sin(2x+)+2cos(3x-)2°y=|sinx|3°y=2sinxcosx+2cos2x-1解:1°y1=sin(2x+)最小正周期T1=py2=2cos(3x-)最小正周期T2=∴T为T1,T2的最小公倍数2p∴T=2pyxo1-1p2p3p-p2°T=p作图注意小结这两种类型的解题规律3°y=sin2x+cos2x∴T=p三、巩固与练习1.y=2cos()-3sin()2.y=-cos(3x+)+sin(4x-)3.y=|sin(2x+)|\n1.y=cossin+1-2sin2四、小结:本节课学习了以下内容:周期函数的定义,周期,最小正周期五、课后作业:P56练习5、6P58习题4.83补充:1.求下列函数的周期:1°y=sin(2x+)+2cos(3x-)2°y=|sinx|3°y=2sinxcosx+2cos2x-12.求下列函数的最值:1°y=sin(3x+)-12°y=sin2x-4sinx+53°y=3.函数y=ksinx+b的最大值为2,最小值为-4,求k,b的值。六、板书设计:课题一、知识点(一)(二)例题:1.2.七、课后反思:题选求下列函数的周期:(1);(2);(3);(4);(5).解:(1),∴周期为;(2),∴周期为;(3)∴周期为;\n(4),∴周期为;(5),∴周期为.说明:求函数周期的一般方法是:先将函数转化为的形式,再利用公式进行求解。

相关文档