• 75.50 KB
  • 2022-08-17 发布

高中数学 函数的表示法教案 新人教A版必修1 教案

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
课题:函数的表示法(一)课型:新授课教学目标:(1)掌握函数的三种表示方法(解析法、列表法、图像法),了解三种表示方法各自的优点;(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)通过具体实例,了解简单的分段函数,并能简单应用。教学重点:会根据不同的需要选择恰当的方法表示函数。教学难点:分段函数的表示及其图象。教学过程:一、课前准备(预习教材---,找出疑惑之处)复习1.回忆函数的定义;复习2.函数的三要素分别是什么?二、新课导学:(一)学习探究探究任务:函数的三种表示方法讨论:结合课本P15给出的三个实例,说明三种表示方法的适用范围及其优点小结:解析法:就是用数学表达式表示两个变量之间的对应关系,如1.2.1的实例(1);优点:简明扼要;给自变量求函数值。图象法:就是用图象表示两个变量之间的对应关系,如1.2.1的实例(2);优点:直观形象,反映两个变量的变化趋势。列表法:就是列出表格来表示两个变量之间的对应关系,如1.2.1的实例(3);优点:不需计算就可看出函数值,如股市走势图;列车时刻表;银行利率表等。典型例题例1.(课本P19例3)某种笔记本的单价是2元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x).变式:作业本每本0.3元,买x个作业本的钱数y(元),试用三种方法表示此实例中的函数。\n反思:例1及变式的函数有何特征?所有的函数都可用解析法表示吗?例2:(课本P20例4)下表是某校高一(1)班三位同学在高一学年度六次数学测试的成绩及班级平均分表:第一次第二次第三次第四次第五次第六次王伟988791928895张城907688758680赵磊686573727582班级平均分88.278.385.480.375.782.6请你对这三们同学在高一学年度的数学学习情况做一个分析例3:某市“招手即停”公共汽车的票价按下列规则制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里的俺公里计算)。如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象。图象(略)变式:邮局寄信,不超过20g重时付邮资0.5元,超过20g重而不超过40g重付邮资1元,每封x克()重的信应付邮资数y(元),试写出y关于x的函数解析式,并画出函数图象。\n小结:在函数的定义域内,对于自变量x的不同取值范围,有着不同的对应法则,这样的函数通常叫做分段函数,动手试试:1.已知f(x)=,求f(0)、f[f(-1)]的值2.设函数,则18,若,则=4。归纳小结:本节课归纳了函数的三种表示方法及优点;讲述了分段函数概念;了解了函数的图象可以是一些离散的点、线段、曲线或射线。课题:函数的表示法(二)课型:新授课教学目标:(1)了解映射的概念及表示方法;(2)掌握求函数解析式的方法:换元法,配凑法,待定系数法,消去法,分段函数的解析式。教学重点:求函数的解析式。教学难点:对函数解析式方法的掌握。教学过程:一、课前准备:(预习教材,找出疑惑之处)复习:举例初中已经学习过的一些对应,或者日常生活中的一些对应实例:(1)对于任何一个实数a,数轴上都有唯一的点P和它对应;(2)对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;(3)对于任意一个三角形,都有唯一确定的面积和它对应;(4)某影院的某场电影的每一张电影票有唯一确定的座位与它对应;你还能找出一些其它的实例吗?二、新课导学:\n(一)映射的概念:定义:一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应为从集合A到集合B的一个映射(mapping)。记作:例1.(课本P22例7)以下给出的对应是不是从A到集合B的映射?(1)集合A={P|P是数轴上的点},集合B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)集合A={P|P是平面直角坐标系中的点},B=,对应关系f:平面直角坐标系中的点与它的坐标对应;(3)集合A={x|x是三角形},集合B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)集合A={x|x是新华中学的班级},集合B={x|x是新华中学的学生},对应关系:每一个班级都对应班里的学生。反思:(1)映射有三个要素:两个集合,一种对应法则,缺一不可;(2)A,B可以是数集,也可以是点集或其它集合。这两个集合具有先后顺序:符号“f:A→B”表示A到B的映射,符号“f:B→A”表示B到A的映射,两者是不同的;(3)集合A中的元素不可剩余,B中元素可剩余。讨论:1函数与映射两者的联系与区别分别是什么?2若用集合表示两者的关系,应怎样表示?(二)求函数的解析式:学习探究:常见的求函数解析式的方法有待定系数法,换元法,配凑法,消去法。例3.已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求函数f(x)的解析式。(待定系数法)例4.已知f(2x+1)=3x-2,求函数f(x)的解析式。(配凑法或换元法)\n例5.已知函数f(x)满足,求函数f(x)的解析式。(消去法)(三)复合函数求解析式:.例7已知函数=4x+3,g(x)=x, 求f[f(x)],f[g(x)],g[f(x)],g[g(x)].:(四)动手试试:1.课本P23练习4;2.已知,求函数f(x)的解析式。3.已知,求函数f(x)的解析式。4.已知,求函数f(x)的解析式。归纳小结:本节课系统地归纳了映射的概念,并进一步学习了求函数解析式的方法。课题:函数的表示法(三)课型:新授课教学目标:\n(1)进一步了解分段函数的求法;(2)掌握函数图象的画法。教学重点:函数图象的画法。教学难点:掌握函数图象的画法。。教学过程:一、课前准备:1.举例初中已经学习过的一些函数的图象,如一次函数,二次函数,反比例函数的图象,并在黑板上演示它们的画法。2.讨论:函数图象有什么特点?二、讲授新课:例1.画出下列各函数的图象:(1)(2);例2.(课本P21例5)画出函数的图象。例3.设,求函数的解析式,并画出它的图象。\n变式1:求函数的最大值。变式2:解不等式。能力提高(选做):当m为何值时,方程有4个互不相等的实数根。变式:不等式对恒成立,求m的取值范围。(三)当堂检测:1.课本P23练习3;\n2.画出函数的图象。归纳小结:函数图象的画法。

相关文档