• 85.50 KB
  • 2022-08-17 发布

高中数学 (几何概型)教案6 新人教A版必修3 教案

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
周次上课时间月日周课型新授课主备人使用人课题几何概型教学目标1.正确理解几何概型的概念;2.掌握几何概型的概率公式:P(A)=;3.会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;教学重点几何概型的概念、公式及应用教学难点几何概型的概念、公式及应用课前准备多媒体课件教学过程:一、〖创设情境〗创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个二、〖新知探究〗1、基本概念(预习后填空):(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P(A)=;\n(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等三、〖典型例题〗:课本例题略例1判下列试验中事件A发生的概度是古典概型,还是几何概型。(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率。分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性。而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关。解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.例2某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:\n设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)==,即此人等车时间不多于10分钟的概率为.小结:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.牛刀小试1.已知地铁列车每10min一班,在车站停1min,求乘客到达站台立即乘上车的概率。解:1.由几何概型知,所求事件A的概率为P(A)=;2.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m的概率.解:记“灯与两端距离都大于2m”为事件A,则P(A)==.例2在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的而40平方千米可看作构成事件的区域面积,有几何概型公式可以求得概率。解:记“钻到油层面”为事件A,则P(A)===0.004.答:钻到油层面的概率是0.004.例3在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率。\n解:取出10毫升种子,其中“含有病种子”这一事件记为A,则P(A)===0.01.答:取出的种子中含有麦诱病的种子的概率是0.01.四、〖课堂小结〗:1.几何概型是不同于古典概型的又一个最基本、最常见的概率模型,其概率计算原理通俗、简单,对应随机事件及试验结果的几何量可以是长度、面积或体积.2.如果一个随机试验可能出现的结果有无限多个,并且每个结果发生的可能性相等,那么该试验可以看作是几何概型.通过适当设置,将随机事件转化为几何问题,即可利用几何概型的概率公式求事件发生的概率.五、〖自我评价与课堂练习〗1.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是()A.0.5B.0.4C.0.004D.不能确定2.平面上画了一些彼此相距2a的平行线,把一枚半径r