• 3.69 MB
  • 2022-08-18 发布

高中数学教案选修2-2数学教案(2)

  • 34页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
§1.3.3函数的最大(小)值与导数(2课时)教学目标:⒈使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值必有的充分条件;⒉使学生掌握用导数求函数的极值及最值的方法和步骤教学重点:利用导数求函数的最大值和最小值的方法.教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系.教学过程:一.创设情景我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.也就是说,如果是函数的极大(小)值点,那么在点附近找不到比更大(小)的值.但是,在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最小.如果是函数的最大(小)值,那么不小(大)于函数在相应区间上的所有函数值.二.新课讲授观察图中一个定义在闭区间上的函数的图象.图中与是极小值,是极大值.函数在上的最大值是,最小值是.1.结论:一般地,在闭区间上函数的图像是一条连续不断的曲线,那么函数在上必有最大值与最小值.说明:⑴如果在某一区间上函数的图像是一条连续不断的曲线,则称函数在这个区间上连续.(可以不给学生讲)⑵给定函数的区间必须是闭区间,在开区间内连续的函数不一定有最大值与最小值.如函数在内连续,但没有最大值与最小值;⑶在闭区间上的每一点必须连续,即函数图像没有间断,⑷函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.(可以不给学生讲)2.“最值”与“极值”的区别和联系⑴最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;34\n⑶函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个⑷极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3.利用导数求函数的最值步骤:由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.一般地,求函数在上的最大值与最小值的步骤如下:⑴求在内的极值;⑵将的各极值与端点处的函数值、比较,其中最大的一个是最大值,最小的一个是最小值,得出函数在上的最值三.典例分析例1.(课本例5)求在的最大值与最小值解:由例4可知,在上,当时,有极小值,并且极小值为,又由于,因此,函数在的最大值是4,最小值是.上述结论可以从函数在上的图象得到直观验证.例2.求函数在区间上的最大值与最小值解:先求导数,得令=0即解得导数的正负以及,如下表X-2(-2,-1)-1(-1,0)0(0,1)1(1,2)2y/-0+0-0+y13↘4↗5↘4↗13从上表知,当时,函数有最大值13,当时,函数有最小值4例3.已知,∈(0,+∞).是否存在实数,使同时满足下列两个条件:(1))在(0,1)上是减函数,在[1,+∞)上是增函数;(2)的最小值是1,若存在,求出,若不存在,说明理由.34\n解:设g(x)=∵f(x)在(0,1)上是减函数,在[1,+∞)上是增函数∴g(x)在(0,1)上是减函数,在[1,+∞)上是增函数.∴∴解得经检验,a=1,b=1时,f(x)满足题设的两个条件.四.课堂练习1.下列说法正确的是()A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x)()A.等于0B.大于0C.小于0D.以上都有可能3.函数y=,在[-1,1]上的最小值为()A.0B.-2C.-1D.4.求函数在区间上的最大值与最小值.5.课本练习五.回顾总结1.函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;2.函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件;3.闭区间上的连续函数一定有最值;开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值4.利用导数求函数的最值方法.六.布置作业34\n§1.4生活中的优化问题举例(2课时)教学目标:1.使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用2.提高将实际问题转化为数学问题的能力教学重点:利用导数解决生活中的一些优化问题.教学难点:利用导数解决生活中的一些优化问题.教学过程:一.创设情景生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题.二.新课讲授导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.利用导数解决优化问题的基本思路:建立数学模型解决数学模型作答用函数表示的数学问题优化问题用导数解决数学问题优化问题的答案三.典例分析例1.海报版面尺寸的设计学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小?解:设版心的高为xdm,则版心的宽为dm,此时四周空白面积为。求导数,得。34\n令,解得舍去)。于是宽为。当时,<0;当时,>0.因此,是函数的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。答:当版心高为16dm,宽为8dm时,海报四周空白面积最小。例2.饮料瓶大小对饮料公司利润的影响(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?(2)是不是饮料瓶越大,饮料公司的利润越大?【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是分,其中是瓶子的半径,单位是厘米。已知每出售1mL的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6cm问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?  (2)瓶子的半径多大时,每瓶的利润最小?解:由于瓶子的半径为,所以每瓶饮料的利润是令解得(舍去)当时,;当时,.当半径时,它表示单调递增,即半径越大,利润越高;当半径时,它表示单调递减,即半径越大,利润越低.(1)半径为cm时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.(2)半径为cm时,利润最大.换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?有图像知:当时,,即瓶子的半径为3cm时,饮料的利润与饮料瓶的成本恰好相等;当时,利润才为正值.当时,,为减函数,其实际意义为:瓶子的半径小于2cm时,瓶子的半径越大,利润越小,半径为cm时,利润最小.例3.磁盘的最大存储量问题计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。问题:现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域.34\n(1)是不是越小,磁盘的存储量越大?(2)为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?解:由题意知:存储量=磁道数×每磁道的比特数。设存储区的半径介于与R之间,由于磁道之间的宽度必需大于,且最外面的磁道不存储任何信息,故磁道数最多可达。由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达。所以,磁盘总存储量×(1)它是一个关于的二次函数,从函数解析式上可以判断,不是越小,磁盘的存储量越大.(2)为求的最大值,计算.令,解得当时,;当时,.因此时,磁盘具有最大存储量。此时最大存储量为例4.汽油的使用效率何时最高我们知道,汽油的消耗量(单位:L)与汽车的速度(单位:km/h)之间有一定的关系,汽油的消耗量是汽车速度的函数.根据你的生活经验,思考下面两个问题:(1)是不是汽车的速度越快,汽车的消耗量越大?(2)“汽油的使用率最高”的含义是什么?分析:研究汽油的使用效率(单位:L/m)就是研究秋游消耗量与汽车行驶路程的比值.如果用表示每千米平均的汽油消耗量,那么,其中,表示汽油消耗量(单位:L),表示汽油行驶的路程(单位:km).这样,求“每千米路程的汽油消耗量最少”,就是求的最小值的问题.通过大量的统计数据,并对数据进行分析、研究,人们发现,汽车在行驶过程中,汽油平均消耗率(即每小时的汽油消耗量,单位:L/h)与汽车行驶的平均速度(单位:km/h)之间有如图所示的函数关系.从图中不能直接解决汽油使用效率最高的问题.因此,我们首先需要将问题转化为汽油平均消耗率(即每小时的汽油消耗量,单位:L/h)与汽车行驶的平均速度(单位:km/h)之间关系的问题,然后利用图像中的数据信息,解决汽油使用效率最高的问题.34\n解:因为这样,问题就转化为求的最小值.从图象上看,表示经过原点与曲线上点的直线的斜率.进一步发现,当直线与曲线相切时,其斜率最小.在此切点处速度约为90.因此,当汽车行驶距离一定时,要使汽油的使用效率最高,即每千米的汽油消耗量最小,此时的车速约为90.从数值上看,每千米的耗油量就是图中切线的斜率,即,约为L._x_x_60_60xx例5.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?解法一:设箱底边长为xcm,则箱高cm,得箱子容积.令=0,解得x=0(舍去),x=40,并求得V(40)=16000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16000是最大值答:当x=40cm时,箱子容积最大,最大容积是16000cm3解法二:设箱高为xcm,则箱底长为(60-2x)cm,则得箱子容积.(后面同解法一,略)由题意可知,当x过小或过大时箱子容积很小,所以最大值出现在极值点处.34\n事实上,可导函数、在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值例6.圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?解:设圆柱的高为h,底半径为R,则表面积S=2πRh+2πR2由V=πR2h,得,则S(R)=2πR+2πR2=+2πR2令+4πR=0解得,R=,从而h====2即h=2R因为S(R)只有一个极值,所以它是最小值答:当罐的高与底直径相等时,所用材料最省变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?提示:S=2+h=V(R)=R=)=0.例6.在经济学中,生产x单位产品的成本称为成本函数同,记为C(x),出售x单位产品的收益称为收益函数,记为R(x),R(x)-C(x)称为利润函数,记为P(x)。(1)、如果C(x)=,那么生产多少单位产品时,边际最低?(边际成本:生产规模增加一个单位时成本的增加量)(2)、如果C(x)=50x+10000,产品的单价P=100-0.01x,那么怎样定价,可使利润最大?变式:已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为.求产量q为何值时,利润L最大?分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此可得出利润L与产量q的函数关系式,再用导数求最大利润.34\n解:收入,利润令,即,求得唯一的极值点答:产量为84时,利润L最大例7.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b.解:由梯形面积公式,得S=(AD+BC)h,其中AD=2DE+BC,DE=h,BC=b∴AD=h+b,∴S=①∵CD=,AB=CD.∴l=×2+b②由①得b=h,代入②,∴l=l′==0,∴h=,当h<时,l′<0,h>时,l′>0.∴h=时,l取最小值,此时b=例8.已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y=4-x2在x轴上方的曲线上,求这种矩形中面积最大者的边长.【解】设位于抛物线上的矩形的一个顶点为(x,y),且x>0,y>0,则另一个在抛物线上的顶点为(-x,y),在x轴上的两个顶点为(-x,0)、(x,0),其中0<x<2.设矩形的面积为S,则S=2x(4-x2),0<x<2.由S′(x)=8-6x2=0,得x=,易知x=是S在(0,2)上的极值点,即是最大值点,所以这种矩形中面积最大者的边长为和.【点评】34\n应用题求解,要正确写出目标函数并明确题意所给的变量制约条件.应用题的分析中如确定有最小值,且极小值唯一,即可确定极小值就是最小值.练习:1:一书店预计一年内要销售某种书15万册,欲分几次订货,如果每次订货要付手续费30元,每千册书存放一年要耗库费40元,并假设该书均匀投放市场,问此书店分几次进货、每次进多少册,可使所付的手续费与库存费之和最少?【解】假设每次进书x千册,手续费与库存费之和为y元,由于该书均匀投放市场,则平均库存量为批量之半,即,故有y=×30+×40,y′=-+20,令y′=0,得x=15,且y″=,f″(15)>0,所以当x=15时,y取得极小值,且极小值唯一,故当x=15时,y取得最小值,此时进货次数为=10(次).即该书店分10次进货,每次进15000册书,所付手续费与库存费之和最少.2:有甲、乙两城,甲城位于一直线形河岸,乙城离岸40千米,乙城到岸的垂足与甲城相距50千米,两城在此河边合设一水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和700元,问水厂应设在河边的何处,才能使水管费用最省?【解】设水厂D点与乙城到岸的垂足B点之间的距离为x千米,总费用为y元,则CD=.y=500(50-x)+700=25000-500x+700,y′=-500+700·(x2+1600)·2x=-500+,令y′=0,解得x=.答:水厂距甲距离为50-千米时,总费用最省.【点评】当要求的最大(小)值的变量y与几个变量相关时,我们总是先设几个变量中的一个为x,然后再根据条件x来表示其他变量,并写出y的函数表达式f(x).四.课堂练习1.用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作的容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积.(高为1.2m34\n,最大容积)5.课本练习五.回顾总结建立数学模型1.利用导数解决优化问题的基本思路:解决数学模型作答用函数表示的数学问题优化问题用导数解决数学问题优化问题的答案2.解决优化问题的方法:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有利的工具。六.布置作业34\n1.5.1曲边梯形的面积一:教学目标 知识与技能目标 理解求曲边图形面积的过程:分割、以直代曲、逼近,感受在其过程中渗透的思想方法过程与方法情感态度与价值观二:教学重难点  重点掌握过程步骤:分割、以直代曲、求和、逼近(取极限)难点 对过程中所包含的基本的微积分“以直代曲”的思想的理解三:教学过程:1.创设情景我们学过如何求正方形、长方形、三角形等的面积,这些图形都是由直线段围成的。那么,如何求曲线围成的平面图形的面积呢?这就是定积分要解决的问题。定积分在科学研究和实际生活中都有非常广泛的应用。本节我们将学习定积分的基本概念以及定积分的简单应用,初步体会定积分的思想及其应用价值。一个概念:如果函数在某一区间上的图像是一条连续不断的曲线,那么就把函数称为区间上的连续函数.(不加说明,下面研究的都是连续函数)2.新课讲授问题:如图,阴影部分类似于一个梯形,但有一边是曲线的一段,我们把由直线和曲线所围成的图形称为曲边梯形.如何计算这个曲边梯形的面积?例1:求图中阴影部分是由抛物线,直线以及轴所围成的平面图形的面积S。34\n思考:(1)曲边梯形与“直边图形”的区别?(2)能否将求这个曲边梯形面积S的问题转化为求“直边图形”面积的问题?xxx1x1xy1xyy分析:曲边梯形与“直边图形”的主要区别:曲边梯形有一边是曲线段,“直边图形”的所有边都是直线段.“以直代曲”的思想的应用.把区间分成许多个小区间,进而把区边梯形拆为一些小曲边梯形,对每个小曲边梯形“以直代取”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值.分割越细,面积的近似值就越精确。当分割无限变细时,这个近似值就无限逼近所求曲边梯形的面积S.也即:用划归为计算矩形面积和逼近的思想方法求出曲边梯形的面积.解:(1).分割在区间上等间隔地插入个点,将区间等分成个小区间:,,…,记第个区间为,其长度为34\n分别过上述个分点作轴的垂线,从而得到个小曲边梯形,他们的面积分别记作:,,…,显然,(2)近似代替记,如图所示,当很大,即很小时,在区间上,可以认为函数的值变化很小,近似的等于一个常数,不妨认为它近似的等于左端点处的函数值,从图形上看,就是用平行于轴的直线段近似的代替小曲边梯形的曲边(如图).这样,在区间上,用小矩形的面积近似的代替,即在局部范围内“以直代取”,则有①(3)求和由①,上图中阴影部分的面积为====从而得到的近似值(4)取极限分别将区间等分8,16,20,…等份(如图),可以看到,当趋向于无穷大时,即趋向于0时,趋向于,从而有34\n从数值上的变化趋势:3.求曲边梯形面积的四个步骤:第一步:分割.在区间中任意插入各分点,将它们等分成个小区间,区间的长度,第二步:近似代替,“以直代取”。用矩形的面积近似代替小曲边梯形的面积,求出每个小曲边梯形面积的近似值.第三步:求和.第四步:取极限。说明:1.归纳以上步骤,其流程图表示为:分割以直代曲求和逼近2.最后所得曲边形的面积不是近似值,而是真实值例2.求围成图形面积解:1.分割在区间上等间隔地插入个点,将区间等分成个小区间:,,…,记第个区间为,其长度为分别过上述个分点作轴的垂线,从而得到34\n个小曲边梯形,他们的面积分别记作:,,…,显然,(2)近似代替∵,当很大,即很小时,在区间上,可以认为函数的值变化很小,近似的等于一个常数,不妨认为它近似的等于左端点处的函数值,这样,在区间上,用小矩形的面积近似的代替,即在局部范围内“以直代取”,则有①(3)求和由①,上图中阴影部分的面积为====从而得到的近似值(4)取极限练习设S表示由曲线,x=1,以及x轴所围成平面图形的面积。四:课堂小结求曲边梯形的思想和步骤:分割以直代曲求和逼近(“以直代曲”的思想)五:教学后记34\n1.5.2汽车行驶的路程一:教学目标 知识与技能目标 了解求曲边梯形面积的过程和解决有关汽车行驶路程问题的过程的共同点;感受在其过程中渗透的思想方法:分割、以不变代变、求和、取极限(逼近)过程与方法通过与求曲边梯形的面积进行类比,求汽车行驶的路程有关问题,再一次体会“以直代曲“的思想情感态度与价值观在体会微积分思想的过程中,体会人类智慧的力量,培养世界是可知的等唯物主义的世界观二:教学重难点  重点掌握过程步骤:分割、以不变代变、求和、逼近(取极限)难点  过程的理解三:教学过程:1.创设情景复习:1.连续函数的概念;2.求曲边梯形面积的基本思想和步骤;利用导数我们解决了“已知物体运动路程与时间的关系,求物体运动速度”的问题.反之,如果已知物体的速度与时间的关系,如何求其在一定时间内经过的路程呢?2.新课讲授问题:汽车以速度组匀速直线运动时,经过时间所行驶的路程为.如果汽车作变速直线运动,在时刻的速度为(单位:km/h),那么它在0≤≤1(单位:h)这段时间内行驶的路程(单位:km)是多少?分析:与求曲边梯形面积类似,采取“以不变代变”的方法,把求匀变速直线运动的路程问题,化归为匀速直线运动的路程问题.把区间分成个小区间,在每个小区间上,由于的变化很小,可以近似的看作汽车作于速直线运动,从而求得汽车在每个小区间上行驶路程的近似值,在求和得(单位:km)的近似值,最后让趋紧于无穷大就得到(单位:km)的精确值.(思想:用化归为各个小区间上匀速直线运动路程和无限逼近的思想方法求出匀变速直线运动的路程).解:1.分割34\n在时间区间上等间隔地插入个点,将区间等分成个小区间:,,…,记第个区间为,其长度为把汽车在时间段,,…,上行驶的路程分别记作:,,…,显然,(2)近似代替当很大,即很小时,在区间上,可以认为函数的值变化很小,近似的等于一个常数,不妨认为它近似的等于左端点处的函数值,从物理意义上看,即使汽车在时间段上的速度变化很小,不妨认为它近似地以时刻处的速度作匀速直线运动,即在局部小范围内“以匀速代变速”,于是的用小矩形的面积近似的代替,即在局部范围内“以直代取”,则有①(3)求和由①,====34\n从而得到的近似值(4)取极限当趋向于无穷大时,即趋向于0时,趋向于,从而有思考:结合求曲边梯形面积的过程,你认为汽车行驶的路程与由直线和曲线所围成的曲边梯形的面积有什么关系?结合上述求解过程可知,汽车行驶的路程在数据上等于由直线和曲线所围成的曲边梯形的面积.一般地,如果物体做变速直线运动,速度函数为,那么我们也可以采用分割、近似代替、求和、取极限的方法,利用“以不变代变”的方法及无限逼近的思想,求出它在a≤≤b内所作的位移.例1.弹簧在拉伸的过程中,力与伸长量成正比,即力(为常数,是伸长量),求弹簧从平衡位置拉长所作的功.分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解.解:将物体用常力沿力的方向移动距离,则所作的功为.1.分割在区间上等间隔地插入个点,将区间等分成个小区间:,,…,记第个区间为,其长度为把在分段,,…,上所作的功分别记作:,,…,(2)近似代替有条件知:34\n(3)求和=从而得到的近似值(4)取极限所以得到弹簧从平衡位置拉长所作的功为:四:课堂小结求汽车行驶的路程有关问题的过程.五:教学后记34\n1.5.3定积分的概念一:教学目标 知识与技能目标 通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;能用定积分的定义求简单的定积分;理解掌握定积分的几何意义;过程与方法借助于几何直观定积分的基本思想,理解定积分的概念;情感态度与价值观二:教学重难点  重点定积分的概念、定积分法求简单的定积分、定积分的几何意义难点 定积分的概念、定积分的几何意义三:教学目标:1.创设情景复习:1.回忆前面曲边图形面积,变速运动的路程,变力做功等问题的解决方法,解决步骤:分割→以直代曲→求和→取极限(逼近2.对这四个步骤再以分析、理解、归纳,找出共同点.2.新课讲授1.定积分的概念一般地,设函数在区间上连续,用分点将区间等分成个小区间,每个小区间长度为(),在每个小区间上取一点,作和式:如果无限接近于(亦即)时,上述和式无限趋近于常数,那么称该常数为函数在区间上的定积分。记为:其中成为被积函数,叫做积分变量,为积分区间,积分上限,积分下限。说明:(1)定积分是一个常数,即无限趋近的常数(时)称为,而不是.34\n(2)用定义求定积分的一般方法是:①分割:等分区间;②近似代替:取点;③求和:;④取极限:(3)曲边图形面积:;变速运动路程;变力做功2.定积分的几何意义如果在区间上函数连续且恒有,那么定积分表示由直线(),和曲线所围成的曲边梯形的面积。说明:一般情况下,定积分的几何意义是介于轴、函数的图形以及直线之间各部分面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号.分析:一般的,设被积函数,若在上可取负值。考察和式不妨设于是和式即为阴影的面积—阴影的面积(即轴上方面积减轴下方的面积)2.定积分的性质根据定积分的定义,不难得出定积分的如下性质:性质1性质2(其中k是不为0的常数)(定积分的线性性质)性质3(定积分的线性性质)性质4(定积分对积分区间的可加性)性质5若,则34\n推论1:,推论2:性质6设为在上的最大值、最小值,则性质7(中值定理)若,则至少有一,使.证:由性质6知,,依介值定理,必有,使,即。说明:①推广:②推广:③性质解释:性质4性质112yxo例1.计算定积分分析:所求定积分即为如图阴影部分面积,面积为。即:思考:若改为计算定积分呢?改变了积分上、下限,被积函数在上出现了负值如何解决呢?(后面解决的问题)34\n练习计算下列定积分1.解:2.解:例2.计算由两条抛物线和所围成的图形的面积.【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。ABCDO解:,所以两曲线的交点为(0,0)、(1,1),面积S=,所以=【点评】在直角坐标系下平面图形的面积的四个步骤:1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。巩固练习计算由曲线和所围成的图形的面积.四:课堂小结定积分的概念、定义法求简单的定积分、定积分的几何意义.五:教学后记(1)定积分的几何意义的片面理解。对于几何意义,多数学生片面理解成定积分就是面积,进而在相关习题中出现错误34\n1.6微积分基本定理一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分过程与方法通过实例体会用微积分基本定理求定积分的方法情感态度与价值观通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。二:教学重难点  重点通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。难点 了解微积分基本定理的含义 三:教学过程:1、复习:定积分的概念及用定义计算2、引入新课我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。变速直线运动中位置函数与速度函数之间的联系设一物体沿直线作变速运动,在时刻t时物体所在位置为S(t),速度为v(t)(),则物体在时间间隔内经过的路程可用速度函数表示为。另一方面,这段路程还可以通过位置函数S(t)在上的增量来表达,即=34\n而。对于一般函数,设,是否也有若上式成立,我们就找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。注:1:定理如果函数是上的连续函数的任意一个原函数,则证明:因为=与都是的原函数,故-=C()其中C为某一常数。令得-=C,且==0即有C=,故=+=-=令,有此处并不要求学生理解证明的过程为了方便起见,还常用表示,即该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。例1.计算下列定积分:(1);(2)。解:(1)因为,所以。(2))因为,所以。练习:计算34\n解:由于是的一个原函数,所以根据牛顿—莱布尼兹公式有===例2.计算下列定积分:。由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论。解:因为,所以,,.可以发现,定积分的值可能取正值也可能取负值,还可能是0:(l)当对应的曲边梯形位于x轴上方时(图1.6一3),定积分的值取正值,且等于曲边梯形的面积;图1.6一3(2)(2)当对应的曲边梯形位于x轴下方时(图1.6一4),定积分的值取负值,且等于曲边梯形的面积的相反数;(3)当位于x轴上方的曲边梯形面积等于位于x轴下方的曲边梯形面积时,定积分的值为0(图1.6一5),且等于位于x轴上方的曲边梯形面积减去位于x轴下方的曲边梯形面积.34\n例3.汽车以每小时32公里速度行驶,到某处需要减速停车。设汽车以等减速度=1.8米/秒2刹车,问从开始刹车到停车,汽车走了多少距离?解:首先要求出从刹车开始到停车经过了多少时间。当t=0时,汽车速度=32公里/小时=米/秒8.88米/秒,刹车后汽车减速行驶,其速度为当汽车停住时,速度,故从解得秒于是在这段时间内,汽车所走过的距离是=米,即在刹车后,汽车需走过21.90米才能停住.微积分基本定理揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效方法.微积分基本定理是微积分学中最重要的定理,它使微积分学蓬勃发展起来,成为一门影响深远的学科,可以毫不夸张地说,微积分基本定理是微积分中最重要、最辉煌的成果.四:课堂小结:本节课借助于变速运动物体的速度与路程的关系以及图形得出了特殊情况下的牛顿-莱布尼兹公式.成立,进而推广到了一般的函数,得出了微积分基本定理,得到了一种求定积分的简便方法,运用这种方法的关键是找到被积函数的原函数,这就要求大家前面的求导数的知识比较熟练,希望,不明白的同学,回头来多复习!五:教学后记:从教以来,一直困惑于一个问题:课堂上如何突出重点并突破难点。当然,理论方面自己早已烂熟于心,关键是缺乏实践方面的体验及感悟。在今天的课堂上,当自己在生物化学班重点及难点均未解决,相反将更多时间纠缠在细节方面,而物理班级恰好相反,教学效果的强烈反差,终于让自己对这个问题有了实践的切身的认识。记得当实习生时,本来一个相当简单的问题,可在课堂上却花费了大量时间,更严重的是学生却听得更为糊涂。一个主要原因在于,对相关知识结构理解不到位,眉毛胡子一把抓,而难点又无法解决。34\n1.7定积分的简单应用一:教学目标 知识与技能目标 1、进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;2、让学生深刻理解定积分的几何意义以及微积分的基本定理;3、初步掌握利用定积分求曲边梯形的几种常见题型及方法;4、体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。过程与方法情感态度与价值观二:教学重难点  重点曲边梯形面积的求法难点 定积分求体积以及在物理中应用 三:教学过程:1、复习1、求曲边梯形的思想方法是什么?2、定积分的几何意义是什么?3、微积分基本定理是什么?2、定积分的应用(一)利用定积分求平面图形的面积例1.计算由两条抛物线和所围成的图形的面积.【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。ABCDO解:,所以两曲线的交点为(0,0)、(1,1),面积S=,所以=【点评】在直角坐标系下平面图形的面积的四个步骤:1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。巩固练习计算由曲线和所围成的图形的面积.例2.计算由直线,曲线以及x轴所围图形的面积S.分析:首先画出草图(图1.7一2),并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例1不同的是,还需把所求图形的面积分成两部分S1和S234\n.为了确定出被积函数和积分的上、下限,需要求出直线与曲线的交点的横坐标,直线与x轴的交点.解:作出直线,曲线的草图,所求面积为图1.7一2阴影部分的面积.解方程组得直线与曲线的交点的坐标为(8,4).直线与x轴的交点为(4,0).因此,所求图形的面积为S=S1+S2.由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形直观确定出被积函数以及积分的上、下限.例3.求曲线与直线轴所围成的图形面积。答案:练习1、求直线与抛物线所围成的图形面积。xyoy=-x2+4x-3答案:2、求由抛物线及其在点M(0,-3)和N(3,0)处的两条切线所围成的图形的面积。略解:,切线方程分别为、,则所求图形的面积为34\n3、求曲线与曲线以及轴所围成的图形面积。略解:所求图形的面积为xxOy=x2ABC4、在曲线上的某点A处作一切线使之与曲线以及轴所围成的面积为.试求:切点A的坐标以及切线方程.略解:如图由题可设切点坐标为,则切线方程为,切线与轴的交点坐标为,则由题可知有,所以切点坐标与切线方程分别为总结:1、定积分的几何意义是:、轴所围成的图形的面积的代数和,即.因此求一些曲边图形的面积要可以利用定积分的几何意义以及微积分基本定理,但要特别注意图形面积与定积分不一定相等,如函数的图像与轴围成的图形的面积为4,而其定积分为0.2、求曲边梯形面积的方法与步骤:(1)画图,并将图形分割为若干个曲边梯形;(2)对每个曲边梯形确定其存在的范围,从而确定积分的上、下限;(3)确定被积函数;(4)求出各曲边梯形的面积和,即各积分的绝对值的和。3、几种常见的曲边梯形面积的计算方法:(1)型区域:①由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(1));②34\n由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(2));③由两条曲线与直线yabxyabxyabx图(1)图(2)图(3)所围成的曲边梯形的面积:(如图(3));(2)型区域:①由一条曲线与直线以及轴所围成的曲边梯形的面积,可由得,然后利用求出(如图(4));②由一条曲线与直线以及轴所围成的曲边梯形的面积,可由先求出,然后利用求出(如图(5));yabxyabxyabx③由两条曲线与直线所围成的曲边梯形的面积,可由先分别求出,,然后利用求出(如图(6));图(4)图(5)图(6)2.求平面曲线的弧长设曲线AB方程为,函数在区间上可导,且连续,则曲线AB的弧长为.3.求旋转体的体积和侧面积由曲线,直线及轴所围成的曲边梯形绕34\n轴旋转而成的旋转体体积为.其侧面积为.(二)、定积分在物理中应用(1)求变速直线运动的路程我们知道,作变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a,b]上的定积分,即例4。一辆汽车的速度一时间曲线如图1.7一3所示.求汽车在这1min行驶的路程.解:由速度一时间曲线可知:因此汽车在这1min行驶的路程是:答:汽车在这1min行驶的路程是1350m.2.变力作功一物体在恒力F(单位:N)的作用下做直线运动,如果物体沿着与F相同的方向移(单位:m),则力F所作的功为W=Fs.探究如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F(x)相同的方向从x=a移动到x=b(a