• 92.00 KB
  • 2022-08-18 发布

高中数学函数的表示方法教案2

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
函数的表示法教学目标:使学生掌握函数的三种常用表示方法,了解初等函数图象的几种情形,理解分段函数的意义,初步学会用函数的知识解决具体问题的方法;通过本节课的教学,使学生认识到知识无止境,对客观世界的认识也是永无止境的,树立终身学习的思想.教学重点:函数的表示方法,函数的应用.教学难点:函数的应用.教学过程:Ⅰ.复习回顾[师]上节课我们学习了判定两个函数是否相同的方法,哪位同学来回答一下如何判定两个函数是否相同呢?[生]判定两个函数是否相同,一要看其定义域是否相同,二要看其对应关系是否相同,当两者完全一致时,这两个函数就是相同的函数,当两者有一不同或两者完全不同时,这两个函数就不是相同的函数.[师]很好!我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).Ⅱ.指导自学[师]课下同学们已经进行了自学,函数的表示方法常用的有哪几种,各有什么优点?[生]函数的表示方法常用的有三种,分别是解析法、列表法、图象法.解析法是用解析式表示两个变量的函数关系,它的优点是关系清楚,容易求函数值,便于研究函数的性质.列表法是用表格表示两个变量的函数关系,它的优点是不必计算就可知道自变量取某些值时的函数值.图象法是用图象表示两个变量的函数关系,它的优点是表示函数的变化情况形象直观.[师]好!(再举些例子对各种表示方法进行说明,并强调:中学里研究的函数主要是用解析式表示的函数)[师]下面请同学们看课本P30例1、例2.(学生看课本、教师巡视)[师]例1、例2的图象有什么特点呢?[生]例1的图象是一些孤立的点,例2的图象是几条线段.[师]回答完全正确,在初中,我们学过的函数图象通常是一条光滑的(不打折)曲线(或直线).例1、例2告诉我们函数的图象有时也可以由一些弧立的点或几段线段组成,以后我们还将看到函数的图象还可以由几段光滑的曲线组成,从例2看到,有些函数在它的定义域中,对于自变量x的不同取值范围,对应关系不同,这种函数通常称为分段函数.注意:分段函数是一个函数,而不是几个函数.[师]例3是生活中的实际问题,对实际问题的解决,要求我们认真分析题意,将其抽象,转化成数学问题,通过解答数学问题,使实际问题得以解决,因此,解决应用问题的关键是将实际问题分析,抽象,转化成数学问题,即将实际问题数学化.下面我们一起对例4进行分析,请大家再仔细看一遍题.[例4]经市场调查,某商品在近100天内,其销售量和价格均是时间t\n的函数,且销售量近似地满足关系g(t)=-t+(t∈N*,0<t≤100),在前40天内价格为f(t)=t+22(t∈N*,0≤t≤40),在后60天内价格为f(t)=-t+52(t∈N*,40<t≤100),求这种商品的日销售额的最大值(近似到1元).分析:弄清“日销量”“价格”“日销额”这三个概念以建立它们之间的函数关系式.解:前40天内日销售额为:S=(t+22)(-t+)=-t2+t+779∴S=-(t-10.5)2+后60天内日销售额为:S=(-t+52)(-t+)=t2-t+∴S=(t-106.5)2-∴得函数关系式S=由上式可知:对于0<t≤40且t∈N*,有当t=10或11时,Smax≈809对于40<t≤100且t∈N*,有当t=41时,Smax=714,综上所述得:当t=10或11时,Smax≈809答:第10天或11天日售额最大值为809元[例5]某中学高一年级学生李鹏,对某蔬菜基地的收益作了调查,该蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示,试解答下列问题.(1)写出图一表示的市场售价间接函数关系P=f(t).写出图二表示的种植成本与时间的函数关系式Q=g(t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?\n(注:市场售价和种植成本的单位:元/102 kg,时间单位:天)解:(1)由图一可得市场售价间接函数关系为,f(t)=由图二可得种植成本间接函数关系式为g(t)=(t-150)2+1000≤t≤300(2)设t时刻的纯收益为h(t),则由题意得h(t)=f(t)-g(t)即h(t)=当0≤t≤200时,得h(t)=-(t-50)2+100∴当t=50时,h(t)取得在t∈[0,200]上的最大值100当200<t≤300时,得h(t)=-(t-350)2+100∴当t=300时,h(t)取得在t∈(200,300]上的最大值87.5综上所述由100>87.5可知,h(t)在t∈[0,300]上可以取得最大值是100,此时t=50,即从二月一日开始的第50天时,上市的西红柿收益最大.评述:(1)以上两例都是考查用数学中函数知识思想、方法去解决实际问题的能力,注意其中关键词的理解,正确找出函数关系式.求最值时配方法是一种常用方法.(2)应用题是高考热点问题,且应用题的具体内容可以多种多样,千变万化,而抽象其数量关系,并建立函数关系式是具有普遍意义的方法.(3)数学应用题因其具有没有固定的背景与题型,难以摸拟分类的特点,也就更接近于我们的生产和实际生活.所以应用题是考查学生创新意识和创新能力的难得的有效题型,同时也不失为提高学生分析问题和解决问题能力的好题型.所以,我们广大师生应加强这一方面的训练,清除心理负面影响,以积极的姿态,迎接数学应用题的挑战,以适应高考的改革要求.[例6]季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.(1)试建立价格P与周次t之间的函数关系式.(2)若此服装每件进价Q与周次t之间的关系为Q=-0.125(t-8)2+12,t∈[0,16],t∈N*试问该服装第几周每件销售利润L最大?解:(1)P=(2)因每件销售利润=售价-进价,即L=P-Q故有:当t∈[0,5)且t∈N*时,L=10+2t+0.125(t-8)2-12=t2+6即,当t=5时,Lmax=9.125当t∈[5,10)时t∈N*时,L=0.125t2-2t+16\n即t=5时,Lmax=9.125当t∈[10,16]时,L=0.125t2-4t+36即,t=10时,Lmax=8.5由以上得,该服装第5周每件销售利润L最大.Ⅲ.课堂练习课本P31练习1,2,3,4Ⅳ.课时小结[师]本节课我们学习了哪些知识呢?请同学们总结一下.[生甲]函数的图象不仅可以是一段光滑的曲线,还可以是一些弧立的点.[生乙]还可以是若干条线段.[生丙]学习了函数知识的应用.[生丁]应用数学知识解决实际问题,关键是将实际问题数学化.[生戊]实际问题数学化就是要认真分析题意,将实际问题抽象,转化成数学问题.[师]好!同学们总结了本节课所学习的知识,重要的在于掌握尤其是函数知识的应用,更要多练,才能运用自如.Ⅴ.课后作业(一)课本P32习题2.21~12.(二)1.预习内容:函数的单调性.2.预习提纲:(1)增函数、减函数的定义是什么?(2)函数单调区间的定义是什么?(3)证明函数单调的方法步骤是怎样的?(4)单调性是个整体概念还是个局部概念?

相关文档