- 1.73 MB
- 2022-08-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
.圆一圆的认识知识点晴1.圆的定义OAr(1)在一个平面内,线段OA绕它的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径,如右图所示。(2)圆可以看作是平面内到定点的距离等于定长的点的集合,定点为圆心,定长为圆的半径。说明:圆的位置由圆心确定,圆的大小由半径确定,半径相等的两个圆为等圆。2.圆的有关概念(1)弦:连结圆上任意两点的线段。(如右图中的CD)。BOA(2)直径:经过圆心的弦(如右图中的AB)。直径等于半径的2倍。DC(3)弧:圆上任意两点间的部分叫做圆弧。(如右图中的、)其中大于半圆的弧叫做优弧,如,小于半圆的弧叫做劣弧。(4)圆心角:如右图中∠COD就是圆心角。3.与圆相关的角(1)与圆相关的角的定义①圆心角:顶点在圆心的角叫做圆心角②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。(2)与圆相关的角的性质①圆心角的度数等于它所对的弦的度数;②一条弧所对的圆周角等于它所对的圆心角的一半;③同弧或等弧所对的圆周角相等;④半圆(或直径)所对的圆周角相等;⑤弦切角等于它所夹的弧所对的圆周角;⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。4.圆心角、弧、弦、弦心距之间的关系。(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等..\n.例题精讲【例1】下面四个命题中正确的一个是()A.过弦的中点的直线平分弦所对的弧 B.过弦的中点的直线必过圆心 C.弦所对的两条弧的中点连线垂直平分弦,且过圆心 D.弦的垂线平分弦所对的弧【答案】C二与圆有关的位置关系知识点晴1.点与圆的位置关系如果圆的半径为r,某一点到圆心的距离为d,那么:(1)点在圆外(2)点在圆上(3)点在圆内2.直线和圆的位置关系设r为圆的半径,d为圆心到直线的距离(1)直线和圆相离,直线与圆没有交点;(2)直线和圆相切,直线与圆有唯一交点;(3)直线和圆相交,直线与圆有两个交点。3.两圆的位置关系设R、r为两圆的半径,d为圆心距(1)两圆外离;(2)两圆外切;(3)两圆相交;(4)两圆内切;(5)两圆内含。(注意:如果为,则两圆为同心圆。)4.切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵且过半径外端∴是⊙的切线(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。..\n.推论2:过切点垂直于切线的直线必过圆心。5.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:∵、是的两条切线∴平分例题精讲【例1】已知⊙O的半径为1,点P到圆心O的距离为d,若关于x的方程x2-2x+d=0有实根,则点P().A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.在⊙O上或⊙O的内部【答案】D【例2】已知:如图,PA,PB分别与⊙O相切于A,B两点.求证:OP垂直平分线段AB.【答案】略【例3】已知:如图,PA切⊙O于A点,PO∥AC,BC是⊙O的直径.请问:直线PB是否与⊙O相切?说明你的理由.【答案】直线PB与⊙O相切.提示:连结OA,证ΔPAO≌ΔPBO..\n.【例5】已知:如图,⊙O1与⊙O2外切于A点,直线l与⊙O1、⊙O2分别切于B,C点,若⊙O1的半径r1=2cm,⊙O2的半径r2=3cm.求BC的长.【答案】.提示:分别连结O1B,O1O2,O2C.【例6】如图,点A,B在直线MN上,AB=11cm,⊙A,⊙B的半径均为1cm.⊙A以每秒2cm的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(cm)与时间t(s)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(cm)与时间t(s)之间的函数表达式;(2)问点A出发多少秒时两圆相切?【答案】(1)当0≤t≤5.5时,d=11-2t;当t>5.5时,d=2t-11.(2)①第一次外切,t=3;②第一次内切,③第二次内切,t=11;④第二次外切,t=13.三垂径定理及推论知识点晴垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;..\n.推论2:圆的两条平行弦所夹的弧相等。即:在⊙中,∵∥∴弧弧例题精讲【例7】在直径为52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm,那么油面宽度AB是________cm.【答案】【例8】如图,F是以O为圆心,BC为直径的半圆上任意一点,A是的中点,AD⊥BC于D,求证:AD=BF.【答案】提示:连接OF,证明是全等三角形。四圆周角定理知识点晴1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:∵和是弧所对的圆心角和圆周角∴2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙中,∵、都是所对的圆周角..\n.∴推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在⊙中,∵是直径或∵∴∴是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在△中,∵∴△是直角三角形或例题精讲【例9】已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB【答案】【例10】已知:如图,⊙O的直径AE=10cm,∠B=∠EAC.求AC的长.【答案】提示:连结CE.不难得出..\n.五与圆有关的计算知识点晴1.圆周长:2.弧长:;3.圆面积:;4.扇形面积:;例题精讲【例11】如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴纸部分BD的长为20cm,则贴纸部分的面积为().A.B.C.D.【答案】D【例12】已知:如图,以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C交半圆O2于D点.试比较与的长.【答案】的长等于的长.提示:连结O2D...\n.六圆幂定理知识点晴1.相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在⊙中,∵弦、相交于点,∴推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在⊙中,∵直径,∴2.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在⊙中,∵是切线,是割线∴3.割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。即:在⊙中,∵、是割线∴例题精讲【例13】如图,P是⊙O外一点,PC切⊙O于点C,PAB是⊙O的割线,交⊙O于A、B两点,如果PA:PB=1:4,PC=12cm,⊙O的半径为10cm,则圆心O到AB的距离是___________..\n.【答案】9七正多边形与圆知识点晴1.正三角形在⊙中△是正三角形,有关计算在中进行:;2.正四边形同理,四边形的有关计算在中进行,:3.正六边形同理,六边形的有关计算在中进行,.例题精讲【例13】已知正多边形的边长为a与外接圆半径R之间满足,则这个多边形是()A.正三边形B.正四边形C.正五边形D.正六边形【答案】C提示:正多边形的边数越多,则边长越小,而有..\n.因为,,所以则,是正五边形,应选C。八课后练习题【例1】若P为半径长是6cm的⊙O内一点,OP=2cm,则过P点的最短的弦长为().A.12cmB.C.D.【答案】D【例2】若⊙O的半径长是4cm,圆外一点A与⊙O上各点的最远距离是12cm,则自A点所引⊙O的切线长为().A.16cmB.C.D.【答案】B【例3】⊙O中,∠AOB=100°,若C是上一点,则∠ACB等于().A.80°B.100°C.120°D.130°【答案】A【例4】三角形的外心是().A.三条中线的交点B.三个内角的角平分线的交点C.三条边的垂直平分线的交点D.三条高的交点【答案】C【例5】如图,A是半径为2的⊙O外的一点,OA=4,AB是⊙O的切线,点B是切点,弦BC∥OA,则的长为().7题图A.B.C.πD.【答案】A..\n.【例6】如图,图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿,,,路线爬行,乙虫沿路线爬行,则下列结论正确的是().8题图A.甲先到B点B.乙先到B点C.甲、乙同时到B点D.无法确定【答案】C【例7】如图,同心圆半径分别为2和1,∠AOB=120°,则阴影部分的面积为().9题图A.πB.C.2πD.4π【答案】C【例8】如图,在⊙O中,AB为⊙O的直径,弦CD⊥AB,∠AOC=60°,则∠B=______.【答案】30【例9】如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为________.【答案】..\n.【例10】已知:如图,在两个同心圆中,大圆的弦AB切小圆于C点,AB=12cm.求两个圆之间的圆环面积.【答案】36pcm2.提示:连接OC,OA.【例11】如图,在桌面上有半径为2cm的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?【答案】设三个圆的圆心为O1、O2、O3,连结O1O2、O2O3、O3O1,可得边长为4cm的正△O1O2O3,则正△O1O2O3外接圆的半径为cm,所以大圆的半径为+2=【例12】如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N.(1)求证:BA·BM=BC·BN;(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值...\n.【答案】(1)证明:连接MN则∠BMN=90°=∠ACB,∴△ACB∽△NMB,∴,∴AB·BM=BC·BN(2)解:连接OM,则∠OMC=90°,∵N为OC中点,∴MN=ON=OM,∴∠MON=60°,∵OM=OB,∴∠B=∠MON=30°.∵∠ACB=90°,∴AB=2AC=2×3=6..