11测试十一(综合练习) 9页

  • 84.00 KB
  • 2022-08-30 发布

11测试十一(综合练习)

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
测试十一(综合练习)一、填空题(每小题1分,共10分)________11.函数y=arcsin√1-x2+──────的定义域为_________√1-x2_______________。2.函数y=x+ex上点(0,1)处的切线方程是______________。f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→oh=_____________。4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。x5.∫─────dx=_____________。1-x416.limXsin───=___________。x→∞X7.设f(x,y)=sin(xy),则fx(x,y)=____________。_______R√R2-x28.累次积分∫dx∫f(X2+Y2)dy化为极坐标下的累次积分为____________。00d3y3d2y9.微分方程───+──(───)2的阶数为____________。dx3xdx2∞∞10.设级数∑an发散,则级数∑an_______________。n=1n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分\n11.设函数f(x)=──,g(x)=1-x,则f[g(x)]=()x111①1-──②1+──③────④xxx1-x12.x→0时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f(X)在X=Xo连续,则f(X)在X=Xo可导②若f(X)在X=Xo不可导,则f(X)在X=Xo不连续③若f(X)在X=Xo不可微,则f(X)在X=Xo极限不存在④若f(X)在X=Xo不连续,则f(X)在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x)=G'(x),则()①F(X)+G(X)为常数②F(X)-G(X)为常数③F(X)-G(X)=0dd④──∫F(x)dx=──∫G(x)dxdxdx16.∫│x│dx=()-1①0②1③2④37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x\n8.设f(x,y)=x3+y3+x2ytg──,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④──f(x,y)t2an+1∞9.设an≥0,且lim─────=p,则级数∑an()n→∞an=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在X=Xo的左右导数存在且相等是f(X)在X=Xo可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx\n①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11x16.lim───∫3tgt2dt=()x→0x301①0②1③──④∞3xy17.limxysin─────=()x→0x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数∑anxn在xo(xo≠0)收敛,则∑anxn在│x│〈│xo│()n=on=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫─────dσ=()Dx11sinx①∫dx∫─────dy0xx__\n1√ysinx②∫dy∫─────dx0yx__1√xsinx③∫dx∫─────dy0xx__1√xsinx④∫dy∫─────dx0xx三、计算题(每小题5分,共45分)___________/x-11.设y=/──────求y'。√x(x+3)sin(9x2-16)2.求lim───────────。x→4/33x-4dx3.计算∫───────。(1+ex)2t1dy4.设x=∫(cosu)arctgudu,y=∫(sinu)arctgudu,求───。0tdx5.求过点A(2,1,-1),B(1,1,2)的直线方程。___6.设u=ex+√y+sinz,求du。xasinθ7.计算∫∫rsinθdrdθ。00y+18.求微分方程dy=(────)2dx通解。x+139.将f(x)=─────────展成的幂级数。(1-x)(2+x)四、应用和证明题(共15分)\n1.(8分)设一质量为m的物体从高空自由落下,空气阻力正比于速度(比例常数为k〉0)求速度与时间的关系。___12.(7分)借助于函数的单调性证明:当x〉1时,2√x〉3-──。x附:参考答案和评分标准一、填空题(每小题1分,共10分)1.(-1,1)2.2x-y+1=03.5A4.y=x2+115.──arctgx2+c26.17.ycos(xy)π/2π8.∫dθ∫f(r2)rdr009.三阶10.发散二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分1.③2.③3.④4.④5.②6.②7.②8.⑤9.④10.③(二)每小题2分,共20分11.④12.④13.⑤14.③15.③\n16.②17.①18.③19.①20.②三、计算题(每小题5分,共45分)11.解:lny=──[ln(x-1)-lnx-ln(x+3)](2分)211111──y'=──(────-──-────)(2分)y2x-1xx+3__________1/x-1111y'=──/──────(────-──-────)(1分)2√x(x+3)x-1xx+318xcos(9x2-16)2.解:原式=lim────────────────(3分)x→4/3318(4/3)cos[9(4/3)2-16]=──────────────────────=8(2分)31+ex-ex3.解:原式=∫───────dx(2分)(1+ex)2dxd(1+ex)=∫─────-∫───────(1分)1+ex(1+ex)21+ex-ex1=∫───────dx+─────(1分)1+ex1+ex1=x-ln(1+ex)+─────+c(1分)1+ex4.解:因为dx=(cost)arctgtdt,dy=-(sint)arctgtdt(3分)dy-(sint)arctgtdt所以───=────────────────=-tgt(2分)dx(cost)arctgtdt5.解:所求直线的方向数为{1,0,-3}(3分)x-1y-1z-2所求直线方程为────=────=────(2分)10-3____6.解:du=ex+√y+sinzd(x+√y+sinx)(3分)__dy=ex+√y+sinz[(1+cosx)dx+─────](2分)\n___2√yπasinθ1π7.解:原积分=∫sinθdθ∫rdr=──a2∫sin3θdθ(3分)0020π/22=a2∫sin3θdθ=──a2(2分)03dydx8.解:两边同除以(y+1)2得──────=──────(2分)(1+y)2(1+x)2dydx两边积分得∫──────=∫──────(1分)(1+y)2(1+x)211亦即所求通解为────-────=c(2分)1+x1+y119.解:分解,得f(x)=────+────(1分)1-x2+x111=────+───────(1分)1-x2x1+──2∞1∞xnx=∑xn+──∑(-1)n──(│x│〈1且│──│〈1)(2分)n=02n=02n2∞1=∑[1+(-1)n───]xn(│x│〈1)(2分)n=02n+1四、应用和证明题(共15分)du1.解:设速度为u,则u满足m=──=mg-ku(3分)dt1解方程得u=──(mg-ce-kt/m)(3分)kmg由u│t=0=0定出c,得u=──(1-e-kt/m)(2分)k__12.证:令f(x)=2√x+──-3则f(x)在区间[1,+∞]连续\n(2分)x11而且当x〉1时,f'(x)=──-──〉0(2分)__x2√x因此f(x)在[1,+∞]单调增加(1分)从而当x〉1时,f(x)〉f(1)=0(1分)___1即当x〉1时,2√x〉3-──(1分)x_

相关文档