- 849.50 KB
- 2022-08-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第二讲工程问题知识点拨工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。在教学中,让学生建立正确概念是解决工程应用题的关键。一.工程问题的基本概念定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、为了学好分数、百分数应用题,必须做到以下几方面:①具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;②在理解、掌握分数的意义和性质的前提下灵活运用;③学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;④学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.三、利用常见的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.例题精讲模块一、工程问题基本题型【例1】一项工程,甲单独做需要天时间,乙单独做需要\n天时间,如果甲、乙合作需要多少时间?【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的,乙每天完成总量的,两人合作每天能完成总量的,所以两人合作的话,需要天能够完成.【例2】一项工程,甲单独做需要天时间,甲、乙合作需要天时间,如果乙单独做需要多少时间?【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的,甲、乙合作每天完成总量的,乙单独做每天能完成总量的,所以乙单独做天能完成.【巩固】一项工程,甲单独做需要天时间,甲、乙合作需要天时间,如果乙单独做需要多少时间?【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的,甲、乙合作每天完成总量的,乙单独做每天能完成总量的,所以乙单独做28天能完成.【例3】甲、乙两人共同加工一批零件,8小时可以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务.问乙一共加工零件多少个?【解析】乙单独加工,每小时加工甲调出后,剩下工作乙需做时所以乙每小时加工零件(个),则小时加工(个),所以乙一共加工零件420+60=480(个).【巩固】一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?【解析】共做了6天后,原来,甲做24天,乙做24天, 现在,甲做0天,乙做40=(24+16)天.这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率是乙的工作效率的16/24=2/3。 如果甲独做,所需时间是天如果乙独做,所需时间是天;甲或乙独做所需时间分别是75天和50天.【例4】一项工程,甲、乙合作需要天完成,乙、丙合作需要天完成,由乙单独做需要天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?【解析】如果将整个工程的工作量看做单位“1”,从条件中我们很容易看出:甲乙,乙丙,乙因此不难得到丙的工作效率为,因此三个人的工作效率之和为,也就是说,三个人合作需要12天可以完成。本题也可以分别求出甲和丙的工作效率,再将三人的工作效率相加,得到三人合作的总工效.但是这样做比较麻烦,事实上只要将甲乙工效和加上丙的工效就可以了.\n【巩固】一项工程,甲、乙合作需要9天完成,乙、丙合作需要天,由丙单独做需要天完成,那么如果甲、丙合作,完成这项工程需要多少天?【解析】法一:和上题类似,我们可以有:甲乙,乙丙,丙不难求得,乙的工作效率为,因此甲的工作效率为,从而甲丙合作的工作效率为,即甲丙合作12天能完成。法二:仍然观察上面那三个等式,我们能否不求出每个人的工作效率,而同过整体的运算直接得到“甲+丙”的值呢?不难发现,我们只要把乙消掉就可以了;因此我们有:,也就是说:,所以甲丙合作天能完成。【巩固】一项工作,甲、乙两人合做8天完成,乙、丙两人合做9天完成,丙、甲两人合做18天完成.那么丙一个人来做,完成这项工作需要多少天?【解析】方法一:对于工作效率有:(甲,乙)+(乙,丙)-(丙,甲)=2乙,即+-=为两倍乙的工作效率,所以乙的工作效率为.而对于工作效率有,(乙,丙)-乙=丙,那么丙的工作效率为-=那么丙一个人来做,完成这项工作需1÷=48天。方法二:2(甲,乙,丙)=(甲+乙)+(乙、丙)+(甲、丙)=++=,所以(甲,乙,丙)=÷2=,即甲、乙、丙3人合作的工作效率为.那么丙单独工作的工作效率为-=,那么丙一个人来做,完成这项工作需48天.【例2】甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需10小时,乙车单独清扫需15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米.问:东、西两城相距多少千米?【解析】法一:先求出甲、乙相遇的时间:小时;甲清扫全长的,乙清扫了全部的;所以东、西两城相距千米.法二:因为时间相等,路程比等于速度比,这样相遇时甲、乙清扫的路程比是,甲行了全程的,乙行了全程的,全程就是千米.【例3】一项工程,甲单独完成需要天,乙单独完成需要天.若甲先做若干天后乙接着做,共用天完成,问甲做了几天?【解析】根据题意可知,甲的工作效率为,乙的工作效率为,采用鸡兔同笼问题的假设法,可知甲做了天.\n【巩固】一项工程,甲队单独做天可以完成,甲队做了天后,由于另有任务,剩下的工作由乙队单独做天完成.问:乙队单独完成这项工作需多少天?【解析】方法一:甲的工作效率为,甲队8天的工作量为,所以乙队15天的工作量为,乙的工作效率为,所以乙队单独完成这项工作需要天方法二:此题可以用代换法解,甲12天工作量等于乙15天工作量,乙的工作效率为甲的,乙独做的时间为(天)。【例2】(2009年十三分小升初入学测试题)一项工程,甲单独做40天完成,乙单独做60天完成.现在两人合作,中间甲因病休息了若干天,所以经过了27天才完成.问甲休息了几天?【解析】法一:在整个过程中,乙没有休息,所以乙一共干了60天,完成了全部工程的,还有是甲做的,所以甲干了(天),休息了(天).法二:假设中间甲没有休息,则两人合作27天,应完成全部工程的,超过了单位“1”的,则甲休息了(天).【巩固】一项工程,甲单独做天完成,乙单独做天完成.甲、乙合作了几天后,乙因事请假,甲继续做,从开工到完成任务共用了天.乙请假多少天?【解析】法一:甲一共干了天,完成了全部工程的,还有是乙做的,所以乙干了(天),休息了(天),请假天数为:(天).法二:假设乙没有请假,则两人合作天,应完成全部工程的,超过了单位“1”的,则乙请假(天).【例3】(2007年十一学校考题)有一项工程,甲单独做需要36天完成,乙单独做需要30天完成,丙单独做需要48天完成.现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天.那么丙休息了天.【解析】设甲、乙工作了天,丙工作了天,则有:,化简得.由于和720都是15的倍数,所以也是15的倍数,而,所以,,所以丙休息了天.【例4】一池水,甲、乙两管同时开,5小时灌满;乙、丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?【解析】\n由于甲、乙和乙、丙的工作效率之和都知道了,根据“现在先开乙管6小时,还需甲、丙两管同时开2小时灌满”,我们可以把乙管的6小时分成3个2小时,第一个2小时和甲同时开,第二个2小时和丙同时开,第三个2小时乙管单独开.这样就变成了甲、乙同时开2小时,乙、丙同时开2小时,乙单独开2小时,正好灌满一池水.可以计算出乙单独灌水的工作量为,所以乙的工作效率为:,所以整池水由乙管单独灌水,需要(小时).【例1】(2007年四中考题)某水池可以用甲、乙两个水管注水,单开甲管需12小时注满,单开乙管需24小时注满,若要求10小时注满水池,且甲、乙两管同时打开的时间尽量少,那么甲、乙最少要同时开放 小时.【解析】要想同时开的时间最小,则根据工效,让甲“满负荷”地做,才可能使得同时开放的时间最小.所以,乙开放的时间为(小时),即甲、乙最少要同时开放4小时.【例2】一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?【解析】先计算1个水龙头每分钟放出水量.2小时半比1小时半多60分钟,多流入水4×60=240(立方米).时间都用分钟作单位,1个水龙头每分钟放水量是240÷(5×150-8×90)=8(立方米),8个水龙头1个半小时放出的水量是8×8×90,其中90分钟内流入水量是4×90,因此原来水池中存有水8×8×90-4×90=5400(立方米).打开13个水龙头每分钟可以放出水8×13,除去每分钟流入4,其余将放出原存的水,放空原存的5400,需要5400÷(8×13-4)=54(分钟).所以打开13个龙头,放空水池要54分钟.水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.【例3】有10根大小相同的进水管给、两个水池注水,原计划用4根进水管给水池注水,其余6根给水池注水,那么5小时可同时注满.因为发现水池以一定的速度漏水,所以改为各用5根进水管给水池注水,结果也是同时注满.(1)如果用10根进水管给漏水的水池注水,需要多少分钟注满?(2)如果增加4根同样的进水管,水池仍然漏水,并且要求在注水过程中每个水池的进水管的数量保持不变,那么要把两个水池注满最少需要多少分钟?(结果四舍五入到个位)【解析】设每只进水管的工效为“1”,那么A池容量为4×5=20,B池容量为6×5=30.当用5根进水管给B池灌水时需30÷5=6小时,而在6小时内5只其水管给A池也是灌有30的水,所以漏了30—20=10,因此漏水的工效为(1)用10根进水管给漏水的A池灌水,那么需(2)设A池需根,那么B池需14根,有所以有化简解得所以A池用7根或6根进水管,此时对应所需时间,分别为:①当A池用7根进水管时:A:7根水管,需时间小时=225分钟;B:7根水管,需时间小时257分钟.此时要把两个水池注满最少需要257分钟;\n②当A池用6根进水管时:A:6根水管,需时间小时277分钟;B:8根水管,需时间30÷8=小时=225分钟.此时要把两个水池注满最少需要277分钟.所以,要把两个水管都注满,最少需257分钟,7根水管注A池,7根水管注B池.【例1】一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?【解析】解法一:甲做1天,乙就做3天,丙就做3×2=6(天),甲做1天,完成工作量的,乙就完成工作量的,丙就完成工作量的。共完成。天说明甲做了2天,乙做了6天,丙做了12天,三人共做了20天,完成这项工作用了20天.解法二:本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了天。【例2】(2007年人大附中考题)一些工人做一项工程,如果能调来16人,那么10天可以完成;如果只调来4人,就要20天才能完成,那么调走2人后,完成这项工程需要天.【解析】设1个人做1天的量为1,设原来有人在做这项工程,得:,解得:.如果调走2人,需要(天).【例3】放满一个水池,如果同时打开1,2,3号阀门,则20分钟可以完成;如果同时打开2,3,4阀门,则21分钟可以完成;如果同时打开1,3,4号阀门,则28分钟可以完成;如果同时打开1,2,4号阀门,则30分钟可以完成.问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?【解析】根据条件,列表如下(画○表示阀门打开,画×表示阀门关闭):1号2号3号4号工作效率○○○××○○○○×○○○○×○从表中可以看出,每个阀门都打开了三次,所以这4个阀门的工作效率之和为:,那么同时打开这4个阀门,需要(分钟).【巩固】、、、、五个人干一项工作,若、、、四人一起干需要6天完成;若、、、四人一起干需要8天完工;若、两人一起干需要12天完工.那么,若一人单独干需要几天完工?\n【解析】从题中可以看出,、、、四人每天完成总量的,、、、四人每天完成总量的,、两人每天完成总量的,可见,一人每天完成总量的,所以一人单独干需要天.课后作业练习1某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?【解析】先对比如下:甲做63天,乙做28天;甲做48天,乙做48天.就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出乙的工作效率是甲的,甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做天因此,乙还要做28+28=56(天),乙还需要做56天.练习2一件工程,甲、乙两人合作8天可以完成,乙、丙两人合作6天可以完成,丙、丁两人合作12天可以完成.那么甲、丁两人合作多少天可以完成?【解析】甲、乙,乙、丙,丙、丁合作的工作效率依次是、、.对于工作效率有(甲,乙)+(丙,丁)-(乙,丙)=(甲,丁).即+-=,甲、丁合作的工作效率为.所以,甲、丁两人合作24天可以完成这件工程.练习3有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天.现在让3个队合修,但中途甲队撤出去到另外工地,结果用了6天才把这条公路修完.当甲队撤出后,乙、丙两队又共同合修了多少天才完成?【解析】甲、乙、丙三个队合修的工作效率为6天完成的工程量为,而实际6天完成了的工程量为1,即甲队少做了,甲队完成超过单位“1”,甲没有干的天数:,(天),即当甲队撤出后,乙、丙两队又合修了6-1=5天.练习4某工程如果由第一、二、三小队合干需要12天才能完成;如果由第一、三、五小队合干需要7天才能完成;如果由第二、四、五小队合干需要8天才能完成;如果由第一、三、四小队合干需要42天才能完成.那么这五个小队一起合干需要多少天才能完成这项工程?【解析】首先将各个小队之间的组合列成表:一队二队三队四队五队工作效率○○○××○×○×○\n×○×○○○×○○×从表中可以看出,一队、三队在表中各出现次,二队、四队、五队各出现次,那么,如果将第二、四、五小队的组合计算两次,那么各种组队的工作效率和中5个小队都被计算了次.所以五个小队的工作效率之和为:,五个小队一起合干需要天.练习1一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?【解析】设这件工作的工作量是1。甲乙两人合作每天完成,甲丙两人合作每天完成,乙丙两人合作每天完成,甲、乙、丙三人合作每天完成减去乙、丙两人每天完成的工作量,甲每天完成,甲独做需要天 答:甲一人独做需要90天完成.