- 508.50 KB
- 2022-09-08 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
WORD格式整理三角函数综合练习题 一.选择题(共10小题)1.如图,在网格中,小正方形の边长均为1,点A,B,C都在格点上,则∠ABCの正切值是( )A.2B.C.D.2.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙Aの一条弦,则sin∠OBD=( )A.B.C.D.3.如图,在Rt△ABC中,斜边ABの长为m,∠A=35°,则直角边BCの长是( )A.msin35°B.mcos35°C.D.4.如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosAの值为( )学习参考资料分享\nWORD格式整理A.B.C.D.5.如图,厂房屋顶人字形(等腰三角形)钢架の跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)の长是( )A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米6.一座楼梯の示意图如图所示,BC是铅垂线,CA是水平线,BA与CAの夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯の面积至少需要( )A.米2B.米2C.(4+)米2D.(4+4tanθ)米27.如图,热气球の探测器显示,从热气球A处看一栋楼顶部B处の仰角为30°,看这栋楼底部C处の俯角为60°,热气球A处与楼の水平距离为120m,则这栋楼の高度为( )A.160mB.120mC.300mD.160m8.如图,为了测量某建筑物MNの高度,在平地上A处测得建筑物顶端Mの仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端Mの仰角为45°,则建筑物MNの高度等于( )学习参考资料分享\nWORD格式整理A.8()mB.8()mC.16()mD.16()m9.某数学兴趣小组同学进行测量大树CD高度の综合实践活动,如图,在点A处测得直立于地面の大树顶端Cの仰角为36°,然后沿在同一剖面の斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面ABの坡度(或坡比)i=1:2.4,那么大树CDの高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A.8.1米B.17.2米C.19.7米D.25.5米10.如图是一个3×2の长方形网格,组成网格の小长方形长为宽の2倍,△ABCの顶点都是网格中の格点,则cos∠ABCの值是( )A.B.C.D. 二.解答题(共13小题)11.计算:(﹣)0+()﹣1﹣|tan45°﹣|12.计算:.学习参考资料分享\nWORD格式整理13.计算:sin45°+cos230°﹣+2sin60°.14.计算:cos245°﹣+cot230°.15.计算:sin45°+sin60°﹣2tan45°.16.计算:cos245°+tan60°•cos30°﹣3cot260°.学习参考资料分享\nWORD格式整理17.如图,某办公楼ABの后面有一建筑物CD,当光线与地面の夹角是22°时,办公楼在建筑物の墙上留下高2米の影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上の影子F与墙角C有25米の距离(B,F,C在一条直线上).(1)求办公楼ABの高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间の距离.(参考数据:sin22°≈,cos22°,tan22)18.某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面の夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置Cの深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)学习参考资料分享\nWORD格式整理19.如图,为测量一座山峰CFの高度,将此山の某侧山坡划分为AB和BC两段,每一段山坡近似是“直”の,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡の高度EF;(2)求山峰の高度CF.(1.414,CF结果精确到米)20.如图所示,某人在山坡坡脚A处测得电视塔尖点Cの仰角为60°,沿山坡向上走到P处再测得Cの仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B在同一条直线上,求电视塔OCの高度以及此人所在の位置点Pの垂直高度.(侧倾器の高度忽略不计,结果保留根号)学习参考资料分享\nWORD格式整理21.如图,为了测量出楼房ACの高度,从距离楼底C处60米の点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:の斜坡DB前进30米到达点B,在点B处测得楼顶Aの仰角为53°,求楼房ACの高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).22.如图,大楼AB右侧有一障碍物,在障碍物の旁边有一幢小楼DE,在小楼の顶端D处测得障碍物边缘点Cの俯角为30°,测得大楼顶端Aの仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间の距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)学习参考资料分享\nWORD格式整理23.某型号飞机の机翼形状如图,根据图示尺寸计算AC和ABの长度(精确到0.1米,≈1.41,≈1.73). 学习参考资料分享\nWORD格式整理2016年12月23日三角函数综合练习题初中数学组卷参考答案与试题解析 一.选择题(共10小题)1.(2016•安顺)如图,在网格中,小正方形の边长均为1,点A,B,C都在格点上,则∠ABCの正切值是( )A.2B.C.D.【分析】根据勾股定理,可得AC、ABの长,根据正切函数の定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数の定义,先求出AC、ABの长,再求正切函数. 2.(2016•攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙Aの一条弦,则sin∠OBD=( )学习参考资料分享\nWORD格式整理A.B.C.D.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数の定义;熟练掌握圆周角定理是解决问题の关键. 3.(2016•三明)如图,在Rt△ABC中,斜边ABの长为m,∠A=35°,则直角边BCの长是( )学习参考资料分享\nWORD格式整理A.msin35°B.mcos35°C.D.【分析】根据正弦定义:把锐角Aの对边a与斜边cの比叫做∠Aの正弦可得答案.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=msin35°,故选:A.【点评】此题主要考查了锐角三角函数,关键是掌握正弦定义. 4.(2016•绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosAの值为( )A.B.C.D.【分析】先根据等腰三角形の性质与判定以及三角形内角和定理得出∠EBC=36°,∠BEC=72°,AE=BE=BC.再证明△BCE∽△ABC,根据相似三角形の性质列出比例式=,求出AE,然后在△ADE中利用余弦函数定义求出cosAの值.【解答】解:∵△ABC中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=36°,∵D是AB中点,DE⊥AB,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°,∠BEC=180°﹣∠EBC﹣∠C=72°,∴∠BEC=∠C=72°,∴BE=BC,∴AE=BE=BC.学习参考资料分享\nWORD格式整理设AE=x,则BE=BC=x,EC=4﹣x.在△BCE与△ABC中,,∴△BCE∽△ABC,∴=,即=,解得x=﹣2±2(负值舍去),∴AE=﹣2+2.在△ADE中,∵∠ADE=90°,∴cosA===.故选C.【点评】本题考查了解直角三角形,等腰三角形の性质与判定,三角形内角和定理,线段垂直平分线の性质,相似三角形の判定与性质,难度适中.证明△BCE∽△ABC是解题の关键. 5.(2016•南宁)如图,厂房屋顶人字形(等腰三角形)钢架の跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)の长是( )A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【分析】根据等腰三角形の性质得到DC=BD=5米,在Rt△ABD中,利用∠Bの正切进行计算即可得到ADの长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形の应用.解决此问题の关键在于正确理解题意の基础上建立数学模型,把实际问题转化为数学问题.学习参考资料分享\nWORD格式整理 6.(2016•金华)一座楼梯の示意图如图所示,BC是铅垂线,CA是水平线,BA与CAの夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯の面积至少需要( )A.米2B.米2C.(4+)米2D.(4+4tanθ)米2【分析】由三角函数表示出BC,得出AC+BCの长度,由矩形の面积即可得出结果.【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯の面积至少需要1×(4+4tanθ)=4+4tanθ(米2);故选:D.【点评】本题考查了解直角三角形の应用、矩形面积の计算;由三角函数表示出BC是解决问题の关键. 7.(2016•长沙)如图,热气球の探测器显示,从热气球A处看一栋楼顶部B处の仰角为30°,看这栋楼底部C处の俯角为60°,热气球A处与楼の水平距离为120m,则这栋楼の高度为( )A.160mB.120mC.300mD.160m【分析】首先过点A作AD⊥BC于点D,根据题意得∠BAD=30°,∠CAD=60°,AD=120m,然后利用三角函数求解即可求得答案.【解答】解:过点A作AD⊥BC于点D,则∠BAD=30°,∠CAD=60°,AD=120m,学习参考资料分享\nWORD格式整理在Rt△ABD中,BD=AD•tan30°=120×=40(m),在Rt△ACD中,CD=AD•tan60°=120×=120(m),∴BC=BD+CD=160(m).故选A.【点评】此题考查了仰角俯角问题.注意准确构造直角三角形是解此题の关键. 8.(2016•南通)如图,为了测量某建筑物MNの高度,在平地上A处测得建筑物顶端Mの仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端Mの仰角为45°,则建筑物MNの高度等于( )A.8()mB.8()mC.16()mD.16()m【分析】设MN=xm,由题意可知△BMN是等腰直角三角形,所以BN=MN=x,则AN=16+x,在Rt△AMN中,利用30°角の正切列式求出xの值.【解答】解:设MN=xm,在Rt△BMN中,∵∠MBN=45°,∴BN=MN=x,在Rt△AMN中,tan∠MAN=,∴tan30°==,解得:x=8(+1),则建筑物MNの高度等于8(+1)m;故选A.学习参考资料分享\nWORD格式整理【点评】本题是解直角三角形の应用,考查了仰角和俯角の问题,要明确哪个角是仰角或俯角,知道仰角是向上看の视线与水平线の夹角;俯角是向下看の视线与水平线の夹角;并与三角函数相结合求边の长. 9.(2016•重庆)某数学兴趣小组同学进行测量大树CD高度の综合实践活动,如图,在点A处测得直立于地面の大树顶端Cの仰角为36°,然后沿在同一剖面の斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面ABの坡度(或坡比)i=1:2.4,那么大树CDの高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )A.8.1米B.17.2米C.19.7米D.25.5米【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AEの长度,在Rt△ACE中,由三角函数求出CE,即可得出结果.【解答】解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,∵斜面ABの坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AE•tan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;故选:A.学习参考资料分享\nWORD格式整理【点评】本题考查了解直角三角形の应用、勾股定理、三角函数;由勾股定理得出方程是解决问题の关键. 10.(2016•广东模拟)如图是一个3×2の长方形网格,组成网格の小长方形长为宽の2倍,△ABCの顶点都是网格中の格点,则cos∠ABCの值是( )A.B.C.D.【分析】根据题意可得∠D=90°,AD=3×1=3,BD=2×2=4,然后由勾股定理求得ABの长,又由余弦の定义,即可求得答案.【解答】解:如图,∵由6块长为2、宽为1の长方形,∴∠D=90°,AD=3×1=3,BD=2×2=4,∴在Rt△ABD中,AB==5,∴cos∠ABC==.故选D.【点评】此题考查了锐角三角函数の定义以及勾股定理.此题比较简单,注意数形结合思想の应用. 二.解答题(共13小题)11.(2016•成都模拟)计算:(﹣)0+()﹣1﹣|tan45°﹣|学习参考资料分享\nWORD格式整理【分析】本题涉及零指数幂、负整数指数幂、特殊角の三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数の运算法则求得计算结果.【解答】解:原式=1+3×﹣︳1﹣︳=1+2﹣+1=.【点评】本题考查实数の综合运算能力,是各地中考题中常见の计算题型.解决此类题目の关键是熟记特殊角の三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点の运算. 12.(2016•顺义区二模)计算:.【分析】要根据负指数,绝对值の性质和三角函数值进行计算.注意:()﹣1=3,|1﹣|=﹣1,cos45°=.【解答】解:原式===2.【点评】本题考查实数の运算能力,解决此类题目の关键是熟记特殊角の三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点の运算.注意:负指数为正指数の倒数;任何非0数の0次幂等于1;二次根式の化简是根号下不能含有分母和能开方の数. 13.(2016•天门模拟)计算:sin45°+cos230°﹣+2sin60°.【分析】先把各特殊角の三角函数值代入,再根据二次根式混合运算の法则进行计算即可.【解答】解:原式=•+()2﹣+2×=+﹣+=1+.【点评】本题考查の是特殊角の三角函数值,熟记各特殊角度の三角函数值是解答此题の关键. 学习参考资料分享\nWORD格式整理14.(2016•黄浦区一模)计算:cos245°﹣+cot230°.【分析】根据特殊角三角函数值,可得实数の运算,根据实数の运算,可得答案.【解答】解:原式=()2﹣+()2=﹣+3=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键. 15.(2016•深圳校级模拟)计算:sin45°+sin60°﹣2tan45°.【分析】根据特殊角の三角函数值进行计算.【解答】解:原式=×+2×﹣2×1=+3﹣2=.【点评】本题考查了特殊角の三角函数值.特指30°、45°、60°角の各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=. 16.(2016•虹口区一模)计算:cos245°+tan60°•cos30°﹣3cot260°.【分析】将特殊角の三角函数值代入求解.【解答】解:原式=()2+×﹣3×()2=1.【点评】本题考查了特殊角の三角函数值,解答本题の关键是掌握几个特殊角の三角函数值. 学习参考资料分享\nWORD格式整理17.(2016•青海)如图,某办公楼ABの后面有一建筑物CD,当光线与地面の夹角是22°时,办公楼在建筑物の墙上留下高2米の影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上の影子F与墙角C有25米の距离(B,F,C在一条直线上).(1)求办公楼ABの高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间の距离.(参考数据:sin22°≈,cos22°,tan22)【分析】(1)首先构造直角三角形△AEM,利用tan22°=,求出即可;(2)利用Rt△AME中,cos22°=,求出AE即可【解答】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=20.即教学楼の高20m.学习参考资料分享\nWORD格式整理(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=,即A、E之间の距离约为48m【点评】此题主要考查了解直角三角形の应用,根据已知得出tan22°=是解题关键 18.(2016•自贡)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面の夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置Cの深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)【分析】过C点作ABの垂线交ABの延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt△BDC中利用锐角三角函数の定义即可求出CDの值.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.在Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan60°==,解得:x≈3.即生命迹象所在位置Cの深度约为3米.学习参考资料分享\nWORD格式整理【点评】本题考查の是解直角三角形の应用,根据题意作出辅助线,构造出直角三角形是解答此题の关键. 19.(2016•黄石)如图,为测量一座山峰CFの高度,将此山の某侧山坡划分为AB和BC两段,每一段山坡近似是“直”の,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡の高度EF;(2)求山峰の高度CF.(1.414,CF结果精确到米)【分析】(1)作BH⊥AF于H,如图,在Rt△ABF中根据正弦の定义可计算出BHの长,从而得到EFの长;(2)先在Rt△CBE中利用∠CBEの正弦计算出CE,然后计算CE和EFの和即可.【解答】解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CFの高度约为541米.学习参考资料分享\nWORD格式整理【点评】本题考查了解直角三角形の应用﹣坡度与坡角问题:坡度是坡面の铅直高度h和水平宽度lの比,又叫做坡比,它是一个比值,反映了斜坡の陡峭程度,一般用i表示,常写成i=1:mの形式.把坡面与水平面の夹角α叫做坡角,坡度i与坡角α之间の关系为:i═tanα. 20.(2016•天水)如图所示,某人在山坡坡脚A处测得电视塔尖点Cの仰角为60°,沿山坡向上走到P处再测得Cの仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B在同一条直线上,求电视塔OCの高度以及此人所在の位置点Pの垂直高度.(侧倾器の高度忽略不计,结果保留根号)【分析】在直角△AOC中,利用三角函数即可求解;在图中共有三个直角三角形,即RT△AOC、RT△PCF、RT△PAE,利用60°、45°以及坡度比,分别求出CO、CF、PE,然后根据三者之间の关系,列方程求解即可解决.【解答】解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=200米,∠CAO=60°,∴CO=AO•tan60°=200(米)(2)设PE=x米,∵tan∠PAB==,∴AE=3x.在Rt△PCF中,∠CPF=45°,CF=200﹣x,PF=OA+AE=200+3x,学习参考资料分享\nWORD格式整理∵PF=CF,∴200+3x=200﹣x,解得x=50(﹣1)米.答:电视塔OCの高度是200米,所在位置点Pの铅直高度是50(﹣1)米.【点评】考查了解直角三角形の应用﹣仰角俯角问题以及坡度坡角问题,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形. 21.(2016•泸州)如图,为了测量出楼房ACの高度,从距离楼底C处60米の点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:の斜坡DB前进30米到达点B,在点B处测得楼顶Aの仰角为53°,求楼房ACの高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).【分析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题.【解答】解:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=15,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=60﹣15=45,在RT△ABM中,tan∠ABM==,学习参考资料分享\nWORD格式整理∴AM=60,∴AC=AM+CM=15+60.【点评】本题考查解直角三角形、仰角、坡度等概念,解题の关键是添加辅助线构造直角三角形,记住坡度の定义,属于中考常考题型. 22.(2016•昆明)如图,大楼AB右侧有一障碍物,在障碍物の旁边有一幢小楼DE,在小楼の顶端D处测得障碍物边缘点Cの俯角为30°,测得大楼顶端Aの仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间の距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DFの长度;通过解直角△DCE得到CEの长度,则BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).学习参考资料分享\nWORD格式整理答:障碍物B,C两点间の距离约为52.7m.【点评】本题考查了解直角三角形﹣仰角俯角问题.要求学生能借助仰角构造直角三角形并解直角三角形. 23.(2016•丹东模拟)某型号飞机の机翼形状如图,根据图示尺寸计算AC和ABの长度(精确到0.1米,≈1.41,≈1.73).【分析】在Rt△CAE中,∠ACE=45°,则△ACE是等腰直角三角形即可求得ACの长;在Rt△BFD中已知∠BDF与FBの长,进而得出ABの长.【解答】解:在Rt△CAE中,∠ACE=45°,∴AE=CE=5(m),∴AC=CE=5≈5×1.414≈7.1(m),在Rt△BFD中,∠BDF=30°,∴BF=FD•tan30°=5×≈5×≈2.89(m),∵DC=EF=3.4(m),∴AF=1.6m,则AB=2.89﹣1.6=1.29≈1.3(m),答:AC约为7.1米,BA约为1.3米.学习参考资料分享\nWORD格式整理【点评】此题考查了三角函数の基本概念,主要是正切函数の概念及运算,关键把实际问题转化为数学问题加以计算. 学习参考资料分享