• 225.00 KB
  • 2021-05-10 发布

中考数学专题复习等腰三角形与直角三角形学生版

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2013年中考数学专题复习第十八讲 等腰三角形与直角三角形 ‎【基础知识回顾】‎ 一、等腰三角形 ‎ 1、定义:有两边 的三角形叫做等腰三角形,其中 的三角形叫做等边三角形 ‎ 2、等腰三角形的性质:‎ ‎ ⑴等腰三角形的两腰 等腰三角形的两个底角 简称为 ‎ ‎⑵等腰三角形的顶角平分线 、 互相重合,简称为 ‎ ‎⑶等腰三角形是轴对称图形,它有 条对称轴,是 ‎ ‎3、等腰三角形的判定:‎ ‎ ⑴定义法:有两边相等的三角形是等腰三角形 ⑵有两 相等的三角形是等腰三角形,简称 ‎ ‎【名师提醒:1、等腰三角形的性质还有:等腰三角形两腰上的 相等,两腰上的 相等,两底角的平分线也相等 ‎2、同为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证 讨论角时应主要底角只被围 角】‎ ‎4、等边三角形的性质:⑴等边三角形的每个内角都 都等于 ‎ ‎ ⑵等边三角形也是 对称图形,它有 条对称轴 1、 等边三角形的判定:‎ ‎ ⑴有三个角相等的三角形是等边三角形 ‎ ⑵有一个角是 度的 三角形是等边三角形 ‎【名师提醒:1、等边三角形具备等腰三角形的所有性质 ‎2、有一个角是直角的等腰三角形是 三角形】‎ 二、线段的垂直平分线和角的平分线 ‎1、线段垂直平分线定义: 一条线段且 这条线段的直线叫做线段的垂直平分线 ‎2、性质:线段垂直平分线上的点到 得距离相等 ‎3、判定:到一条线段两端点距离相等的点在 ‎ 角的平分线:‎ ‎1、性质:角平分线上的点到 得距离相等 ‎2、判定:到角两边距离相等的 ‎ ‎【名师提醒:1、线段的垂直平分可以看作是 的点的集合,角平分线可以看作是 的点的 ‎2、要移用作一条已知线段的垂直平分线和已知角的角平分线】‎ 三、直角三角形:‎ ‎1、勾股定理和它的逆定理:‎ ‎ 勾股定理:若 一 个直角三角形的两直角边为a、b斜边为c则a、b、c满足 ‎ 逆定理:若一个三角形的三边a、b、c满足 则这个三角形是直角三角形 ‎【名师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合 ‎2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,‎ ‎3、勾股数,列举常见的勾股数三组 、 、 】‎ ‎2、直角三角形的性质:‎ ‎ 除勾股定理外,直角三角形还有如下性质:‎ ‎⑴直角三角形两锐角 ‎ ‎⑵直角三角形斜边的中线等于 ‎ ‎⑶在直角三角形中如果有一个锐角是300,那么它就对 边是 边的一半 ‎3、直角三角形的判定:‎ ‎ 除勾股定理的逆定理外,直角三角形还有如下判定方法:‎ 定义法:⑴有一个角是 的三角形是直角三角形 ‎ ⑵有两个角是 的三角形是直角三角形 ‎ ⑶如果一个三角形一边上的中线等于这边的 这个三角形是直角三角形 ‎【名师提醒:直角三角形的有关性质在边形,中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】‎ ‎【重点考点例析】‎ ‎ 考点一:等腰三角形性质的运用 例1 (2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是 或4‎ ‎.‎ 对应训练 ‎1.(2012•广安)已知等腰△ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为(  )‎ A.45° B.75° C.45°或75° D.60°‎ 考点二:线段垂直平分线 例2 (2012•毕节地区)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是(  )‎ A. B.‎2 ‎‎ ‎C. D.4‎ 思路分析:求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出 对应训练 ‎2.(2012•贵阳)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是(  )‎ A.3 B.‎2 ‎C. D.1‎ ‎ 考点三:等边三角形的判定与性质 例3 (2012•遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D. (1)当∠BQD=30°时,求AP的长; (2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.‎ 对应训练 ‎3.(2012•湘潭)如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连接BD,交AC于F. (1)猜想AC与BD的位置关系,并证明你的结论; (2)求线段BD的长.‎ 考点四:角的平分线 例4 (2012•梅州)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF= 2‎ ‎.‎ 对应训练 ‎4.(2012•常德)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D到AB边的距离是 2‎ ‎.‎ 考点五:勾股定理 例5 (2012•黔西南州)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,则四边形ACEB的周长为 .‎ 对应训练 ‎5. (2012•新疆)如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=π,S2=2π,则S3是 .‎ ‎【备考真题过关】‎ 一、选择题 ‎1.(2012•肇庆)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为(  )‎ A.16 B.‎18 ‎C.20 D.16或20‎ ‎2.(2012•攀枝花)已知实数x,y满足|x-4|+=0,则以x,y的值为两边长的等腰三角形的周长是(  )‎ A.20或16 B.20‎ C.16 D.以上答案均不对 ‎3.(2012•江西)等腰三角形的顶角为80°,则它的底角是(  )‎ A.20° B.50° C.60° D.80°‎ ‎4.(2012•三明)如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有(  )‎ A.2个 B.3个 C.4个 D.5个 ‎5.(2012•本溪)如图在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为(  )‎ A.16 B.‎15 ‎C.14 D.13‎ ‎6.(2012•荆门)如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为(  )‎ A.2 B. C. D.3‎ ‎7.(2012•黔东南州)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为(  )‎ A.(2,0) B.(,0) C.(,0) D.(,0)‎ ‎1.(2012•铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为(  )‎ ‎ ‎ A.‎ ‎6‎ B.‎ ‎7‎ C.‎ ‎8‎ D.‎ ‎9‎ ‎ ‎ ‎2.(2012•佳木斯)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为(  )‎ ‎ ‎ A.‎ ‎20‎ B.‎ ‎12‎ C.‎ ‎14‎ D.‎ ‎13‎ 二、填空题 ‎8.(2012•随州)等腰三角形的周长为16,其一边长为6,则另两边为 6和4或5和5‎ ‎.‎ ‎9.(2012•泉州)如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD= 3‎ ‎.‎ ‎10.(2012•钦州)已知等腰三角形的顶角为80°,那么它的一个底角为 50°‎ ‎.‎ ‎11.(2012•黑龙江)等腰三角形一腰长为5,一边上的高为4,则底边长 .‎ ‎12.(2012•贵阳)如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A‎1A2=A‎1C;在A‎2C上取一点D,延长A‎1A2到A3,使得A‎2A3=A2D;…,按此做法进行下去,∠An的度数 .‎ ‎13.(2012•海南)如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是 9‎ ‎.‎ ‎14.(2012•黄冈) 如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为 36°‎ ‎.‎ ‎15.(2012•黔东南州)用6根相同长度的木棒在空间中最多可搭成 4‎ 个正三角形.‎ ‎16.(2012•泰州)如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是 4‎ ‎.‎ ‎17.(2012•佳木斯)等腰三角形一腰长为5,一边上的高为3,则底边长为 .‎ ‎4.(2012•鸡西)Rt△ABC中,∠A=90°,BC=4,有一个内角为60°,点P是直线AB上不同于A、B的一点,且∠ACP=30°,则PB的长为 4或或 .‎ ‎ ‎ ‎5.(2012•无锡) 如图,△ABC中,∠ACB=90°,AB=‎8cm,D是AB的中点.现将△BCD沿BA方向平移‎1cm,得到△EFG,FG交AC于H,则GH的长等于 ‎3 cm.‎ ‎ ‎ ‎6.(2012•朝阳)下列说法中正确的序号有 ①②③④ .‎ ‎①在Rt△ABC中,∠C=90°,CD为AB边上的中线,且CD=2,则AB=4;‎ ‎②八边形的内角和度数约为1080°;‎ ‎③2、3、4、3这组数据的方差为0.5;‎ ‎④分式方程的解为x=;‎ ‎⑤已知菱形的一个内角为60°,一条对角线为2,则另一条对角线长为2.‎ 三、解答题 ‎18.(2012•益阳)如图,已知AE∥BC,AE平分∠DAC. 求证:AB=AC.‎ ‎19.(2012•珠海)如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线. (1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明) (2)设DN与AM交于点F,判断△ADF的形状.(只写结果)‎ ‎20.(2012•常州)如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC的垂线分别与AD、BC相交于点E、F,连接AF.求证:AE=AF.‎ ‎7.(2012•淮安)如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10,AB=20.求∠A的度数.‎ ‎21.(2012•南京)如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、我们称∠APB是⊙O上关于点A、B的滑动角. (1)已知∠APB是⊙O上关于点A、B的滑动角, ①若AB是⊙O的直径,则∠APB= 90‎ ‎°; ②若⊙O的半径是1,AB= ,求∠APB的度数; (2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.‎ ‎1.(2012•河池)如图,在10×10的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的顶点上.‎ ‎(1)填空:tanA=  ,AC= 2 (结果保留根号);‎ ‎(2)请你在图中找出一点D(仅一个点即可),连接DE、DF,使以D、E、F为顶点的三角形与△ABC全等,并加以证明.‎ ‎2.(2012•鄂州)小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,试求BD的长.‎ ‎3.(2012•北京)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.求CD的长和四边形ABCD的面积.‎