- 4.93 MB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考复习专题 --------圆的切线的判定与性质
知识考点:
1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。
2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。
精典例题:
一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.
例1 如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.
求证:EF与⊙O相切.
例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD.
求证:PA与⊙O相切.
例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M
求证:DM与⊙O相切.
例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.
求证:DC是⊙O的切线
例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP.
求证:PC是⊙O的切线.
例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.
求证:CE与△CFG的外接圆相切.
二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”
例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.
求证:AC与⊙D相切.
例8 已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.
求证:CD是⊙O的切线.
[习题练习]
例1如图,AB是⊙O的弦(非直径),C、D是AB上两点,并且OC=OD,求证:AC=BD.
例2已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC交于点E,求证:△
DEC为等腰三角形.
例3如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB的延长线于D,求证:AC=CD.
例4如图20-12,BC为⊙O的直径,AD⊥BC,垂足为D,,BF和AD交于E,
求证:AE=BE.
例5如图,AB是⊙O的直径,以OA为直径的⊙O1与⊙O2的弦相交于D,DE⊥OC,垂足为E.
(1)求证:AD=DC.(2)求证:DE是⊙O1的切线.
例6如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.
(1)求∠ACM的度数.(2)在MN上是否存在一点D,使AB·CD=AC·BC,说明理由.
例7如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.
(1)若圆心O与C重合时,⊙O与AB有怎样的位置关系?
(2)若点O沿CA移动,当OC等于多少时,⊙O与AB相切?
19.如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙0交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结0G.(1)判断0G与CD的位置关系,写出你的结论并证明;(2)求证:AE=BF;(3)若,求⊙O的面积。
12、如图,割线ABC与⊙O相交于B、C两点,D为⊙O上一点,E为的中点,OE交BC于F,DE交AC于G,∠ADG=∠AGD。
(1)求证:AD是⊙O的切线;
(2)如果AB=2,AD=4,EG=2,求⊙O的半径。
13、如图,在△ABC中,∠ABC=900,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,AD=2,AE=1,求。
1如图,等腰三角形ABC中,AC=BC=10,AB=12。以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E。
(1)求证:直线EF是⊙O的切线;
(2)求CF:CE的值。
A
B
D
C
E
F
G
O
(第22题图)
2如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.⑴求证:DE是⊙O的切线;⑵若,求的值。
F
E
D
C
B
A
O
3如图,中,,以为直径作交边于点,是边的中点,连接.
C
E
B
A
O
F
D
(1)求证:直线是的切线;
(2)连接交于点,若,求的值.
4.如图,点O在∠APB的平分线上,⊙O与PA相切于点C.
(1) 求证:直线PB与⊙O相切;
(2) PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.
已知:如图,在中,,点在上,以为圆心,长为半径的圆与分别交于点,且.
D
C
O
A
B
E
(1)判断直线与的位置关系,并证明你的结论;
(2)若,,求的长.
解:(1)
(2)
如图18,四边形内接于,是的直径,,垂足为,平分.
(1)求证:是的切线;
D
E
C
B
O
A
图18
(2)若,求的长.
(第24题)
B
D
C
E
A
O
如图所示,是直角三角形,,以为直径的交于点,点是边的中点,连结.
(1)求证:与相切;
(2)若的半径为,,求.
24、
如图,AB是⊙O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.
(1)证明CF是⊙O的切线;
(2)设⊙O的半径为1,且AC=CE,求MO的长.
【例1】如图,AC为⊙O的直径,B是⊙O外一点,AB交⊙O于E点,过E点作⊙O的切线,交BC于D点,DE=DC,作EF⊥AC于F点,交AD于M点。
(1)求证:BC是⊙O的切线;
(2)EM=FM。
证明:
【例2】如图,△ABC中,AB=AC,O是BC的中点,以O为圆心的圆与AB相切于点D。求证:AC是⊙O的切线。
【例3】如图,已知AB是⊙O的直径,BC为⊙O的切线,切点为B,OC平行于弦AD,OA=。
(1)求证:CD是⊙O的切线;
(2)求的值;
(3)若AD+OC=,求CD的长。
探索与创新:
【问题一】如图,以正方形ABCD的边AB为直径,在正方形内部作半圆,圆心为O,CG切半圆于E,交AD于F,交BA的延长线于G,GA=8。
(1)求∠G的余弦值;
(2)求AE的长。
【问题二】如图,已知△ABC中,AC=BC,∠CAB=(定值),⊙O的圆心O在AB上,并分别与AC、BC相切于点P、Q。
(1)求∠POQ;
(2)设D是CA延长线上的一个动点,DE与⊙O相切于点M,点E在CB的延长线上,试判断∠DOE的大小是否保持不变,并说明理由。
圆的切线证明及线段长求解在在中考中的常见题型
1、已知:如图,在矩形中,点在对角线上,以的长为半径的⊙与,分别交于点E、点F,且∠=∠.
(1)判断直线与⊙的位置关系,并证明你的结论;
(2)若,,求⊙的半径.
2、已知:如图,⊙O的半径OC垂直弦AB于点H,连接BC,过点A作弦AE∥BC,过点C作CD∥BA交EA延长线于点D,延长CO交AE于点F.
(1)求证:CD为⊙O的切线;
(2)若BC=5,AB=8,求OF的长.
A
B
F
C
D
E
O
第3题图
3、如图,是等腰三角形,,以为
直径的⊙与交于点,,垂足为,
的延长线与的延长线交于点.
(1)求证:是⊙的切线;
(2)若⊙的半径为,,求的值.
4、已知:如图,是的直径,切于,交于,为边的中点,连结.
(1) 是的切线;
(2) 若, 的半径为5, 求的长.
O
B
G
E
C
M
A
F
5、如图,在中,,是角平分线,
平分交于点,经过两点的交于
点,交于点,恰为的直径.
(1)求证:与相切;
(2)当时,求的半径.
6、如图,AB是的直径,,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且
(1)证明CF是的切线
(2) 设⊙O的半径为1.且AC=CE,求MO的长.
7、如图,已知AB为⊙O的直径,DC切⊙O于点C,过D点作 DE⊥AB,垂足为E,DE交AC于点F. 求证:△DFC是等腰三角形.
8、在Rt中,∠F=90°,点B、C分别在AD、FD上,以AB为直径的半圆O 过点C,联结AC,将△AFC 沿AC翻折得,且点E恰好落在直径AB上.
(1)判断:直线FC与半圆O的位置关系是_______________;并证明你的结论.
(2)若OB=BD=2,求CE的长.
9、已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,
(9题图)
联结EB交OD于点F.
(1)求证:OD⊥BE;
(2)若DE=,AB=5,求AE的长.
10、如图所示,AB是⊙O的直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2) 当AB=10,BC=8时,求BD的长.
11、已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C.
(1)求证:AD=DC;
(2)过D作⊙O的切线交BC于E,若DE=2,CE=1,
求⊙O的半径.
12、如图,为⊙的直径,平分交⊙于点,
的延长线于点,交的延长
线于点,
(1)求证:是⊙的切线;
(2)若⊙的半径为5,求的长.
13、如图,等腰三角形ABC中,AC=BC=6,AB=8.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求sin∠E的值.
14、如图,为半圆的直径,点C在半圆上,过点作的平行线交于点,交过点的直线于点,且.
(1)求证:是半圆O的切线;
(2)若,,求的长.
15、已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点, 交BD于点G,交AB于点F.
(1)求证:AC与⊙O相切;
(2)当BD=2,sinC=时,求⊙O的半径.
16、如图,AB是⊙O的直径,点C在⊙O上,M是 的中点,OM交⊙O的
切线BP于点P.
(1)判断直线PC和⊙O的位置关系,
并证明你的结论.
(2)若sin∠BAC=0.8,⊙O的半径为2,
求线段PC的长.
17、如图,在⊙O中,AB是直径,AD是弦,∠ADE = 60°,∠C = 30°.
(1)判断直线CD是否为⊙O的切线,并说明理由;
O
B
C
D
E
A
(2)若CD = ,求BC的长.
18、已知,如图,直线MN交⊙O于A,B两点,AC是直径,
AD平分CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若cm,cm,求⊙O的半径.
19、已知:如图,为⊙的直径,弦,切⊙于,联结.
(1)判断是否为⊙的切线,若是请证明;若不是请说明理由.
(2)若,,求⊙的半径.
20、如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F.
(1)求证:EF是⊙O的切线;
(2)求DE的长.
21、已知:在⊙O中,AB是直径,AC是弦,OE⊥AC
于点E,过点C作直线FC,使∠FCA=∠AOE,交
AB的延长线于点D.
(1)求证:FD是⊙O的切线;
(2)设OC与BE相交于点G,若OG=2,求⊙O
半径的长;
(3)在(2)的条件下,当OE=3时,求图中阴影
部分的面积.
22、已知:如图,点是⊙上一点,半径的延长线与过点的直线交于点,,.
(1)求证:是⊙的切线;
(2)若,,求弦的长.
23、如图,点D是⊙O直径CA的延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,弦AE与BC相交
于点F,且CF=9,cos∠BFA=,求EF的长.
24、如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B.
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径为3,AB=4,求AD的长.
25、已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF的延长线于点C.
(1)判断直线CE与⊙O的位置关系,并证明你的结论;
(2)若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长.
26、已知:如图,在△ABC中,AB = AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,联结PC,交AD于点E.
(1)求证:AD是圆O的切线;
A
B
C
D
P
E
.
O
(第26题)
(2)若PC是圆O的切线,BC = 8,求DE的长.
27、已知:如图,在△ABC中,,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,过B、D、E三点作⊙O.
(1)求证:AC是⊙O的切线;
(2)设⊙O交BC于点F,连结EF,若BC=9, CA=12.
求的值.
(第28题)
28、在Rt△ABC中,∠C=90, BC=9, CA=12,∠ABC的平分线BD交AC于点D,
DE⊥DB交AB于点E,⊙O是△BDE的外接圆,交BC于点F
(1)求证:AC是⊙O的切线;
(2)联结EF,求的值
14、如图,AB是半圆(圆心为O)的直径,OD是半径,BM切半圆于B,OC与弦AD平行且交BM于C。
(1)求证:CD是半圆的切线;
(2)若AB长为4,点D在半圆上运动,设AD长为,点A到直线CD的距离为,试求出与之间的函数关系式,并写出自变量的取值范围。
15、如图,AB是⊙O的直径,点C在⊙O的半径AO上运动, PC⊥AB交⊙O于E,PT切⊙O于T,PC=2.5。
(1)当CE正好是⊙O的半径时,PT=2,求⊙O的半径;
(2)设,,求出与之间的函数关系式;
(3)△PTC能不能变为以PC为斜边的等腰直角三角形?若能,请求出△PTC的面积;若不能,请说明理由。
11
20. 已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C.
(1)求证:AD=DC;
(2)过D作⊙O的切线交BC于E,若DE=2,CE=1,
求⊙O的半径.
20.在Rt中,∠F=90°,点B、C分别在AD、FD上,以AB为直径的半圆O 过点C,联结AC,将△AFC 沿AC翻折得,且点E恰好落在直径AB上.
(1)判断:直线FC与半圆O的位置关系是_______________;并证明你的结论.
(2)若OB=BD=2,求CE的长.
)
20.如图所示,AB是⊙O的直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求BD的长.
(20题图)
20.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,
联结EB交OD于点F.
(1)求证:OD⊥BE;
(2)若DE=,AB=5,求AE的长.
20. 如图,AB是的直径,,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且
(1)证明CF是的切线
(2) 设⊙O的半径为1.且AC=CE,求MO的长.
20. 已知:AB是⊙O的弦,OD⊥AB于M交⊙O于点D,CB⊥AB交AD的延长线于C.
(1)求证:AD=DC;
(2)过D作⊙O的切线交BC于E,若DE=2,CE=1,
求⊙O的半径.
20.在Rt中,∠F=90°,点B、C分别在AD、FD上,以AB为直径的半圆O 过点C,联结AC,将△AFC 沿AC翻折得,且点E恰好落在直径AB上.
(1)判断:直线FC与半圆O的位置关系是_______________;并证明你的结论.
(2)若OB=BD=2,求CE的长.
20.如图所示,AB是⊙O的直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求BD的长.
(20题图)
20.(本小题满分5分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,
联结EB交OD于点F.
(1)求证:OD⊥BE;
(2)若DE=,AB=5,求AE的长.
20. 如图,AB是的直径,,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且
(1)证明CF是的切线
(2) 设⊙O的半径为1.且AC=CE,求MO的长.
1.如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F。
(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5,
求BF的长。
2.如图,已知△ABC内接于⊙O,AC是直径,
D是弧AB的中点,过点D作直线BC的垂线,分别交
CB、CA的延长线于E、F.
(1)求证:EF是⊙O的切线.
(2)若EF=8,EC=6,求⊙O的半径.
3.已知是⊙O的直径,是⊙O的切线,A是切点,BP与⊙0交于点C.(Ⅰ)如图①,若AB=2,,求的长(结果保留根号);
(Ⅱ)如图②,若D为AP的中点,求证直线CD是⊙O的切线.
A
B
C
O
P
图①
A
B
C
O
P
D
图②
4.如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连结OE,CD=,∠ACB=30°.
(1)求证:DE是⊙O的切线;
(2)分别求AB,OE的长;
O
B
A
C
E
M
D
1.如图,以线段AB为直径的⊙O交线段AC于点E,点M是弧AE的中点,OM交AC
于点D,∠BOE=60°,,.
(1)求的度数;
(2)求证:BC是⊙O的切线;
(3)求MD的长度.
2.如图, Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E.
(1)求证:;
(2)若tanC=,DE=2,求AD的长.
.
3.如图,⊙O的直径AB=12,弧BC的长为2,D在OC的延长线上,且CD=OC.
(1)求∠A的度数;
(2)求证:DB是⊙O的切线.
4.
如图,⊙O的圆心在Rt△ABC的直角边AC上,⊙O经过C、D两点,与斜边AB交于点E,连结BO、ED,有BO∥ED,作弦EF⊥AC于G,连结DF.
(1)求证:AB为⊙O的切线;
(2)若⊙O的半径为5,sin∠DFE=,求EF的长.
1.如图,AB为⊙O的直径,劣弧,BD∥CE,连接AE并延长交BD于D。
求证:(1)BD是⊙O的切线