• 300.00 KB
  • 2021-05-10 发布

全国中考数学试题分类汇编 二元一次方程含解析

  • 20页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
二元一次方程(组)及其应用 一、选择题 ‎1.(2014•新疆,第8题5分)“六•一”儿童节前夕,某超市用3360元购进A,B两种童装共120套,其中A型童装每套24元,B型童装每套36元.若设购买A型童装x套,B型童装y套,依题意列方程组正确的是(  )‎ ‎ ‎ A.‎ B.‎ ‎ ‎ C.‎ D.‎ 考点:‎ 由实际问题抽象出二元一次方程组 分析:‎ 设购买A型童装x套,B型童装y套,根据超市用3360元购进A,B两种童装共120套,列方程组求解.‎ 解答:‎ 解:设购买A型童装x套,B型童装y套,‎ 由题意得,.‎ 故选B.‎ 点评:‎ 本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.‎ ‎ ‎ ‎2.(2014•温州,第9题4分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是(  )‎ ‎ ‎ A.‎ B.‎ C.‎ D.‎ 考点:‎ 由实际问题抽象出二元一次方程组.‎ 分析:‎ 设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.‎ 解答:‎ 解:设男生有x人,女生有y人,根据题意得,‎ ‎.‎ 故选:D.‎ 点评:‎ 此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.‎ ‎ ‎ ‎3.(2014•毕节地区,第13题3分)若﹣2amb4与5an+2b2m+n可以合并成一项,则mn的值是( )‎ ‎ ‎ A.‎ ‎2‎ B.‎ ‎0‎ C.‎ ‎﹣1‎ D.‎ ‎1‎ ‎ ‎ 考点:‎ 合并同类项 分析:‎ 根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据乘方,可得答案.‎ 解答:‎ 解:若﹣2amb4与5an+2b2m+n可以合并成一项,‎ ‎,‎ 解得,‎ mn=20=1,‎ 故选:D.‎ 点评:‎ 本题考查了合并同类项,同类项是字母相同且相同字母的指数也相同是解题关键.‎ ‎4.(2014•襄阳,第8题3分)若方程mx+ny=6的两个解是,,则m,n的值为(  )‎ ‎ ‎ A.‎ ‎4,2‎ B.‎ ‎2,4‎ C.‎ ‎﹣4,﹣2‎ D.‎ ‎﹣2,﹣4‎ 考点:‎ 二元一次方程的解.‎ 专题:‎ 计算题.‎ 分析:‎ 将x与y的两对值代入方程计算即可求出m与n的值.‎ 解答:‎ 解:将,分别代入mx+ny=6中,得:,‎ ‎①+②得:3m=12,即m=4,‎ 将m=4代入①得:n=2,‎ 故选A 点评:‎ 此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.‎ ‎ ‎ ‎5.(2014•襄阳,第9题3分)用一条长40cm的绳子围成一个面积为64cm2的长方形.设长方形的长为xcm,则可列方程为(  )‎ ‎ ‎ A.‎ x(20+x)=64‎ B.‎ x(20﹣x)=64‎ C.‎ x(40+x)=64‎ D.‎ x(40﹣x)=64‎ 考点:‎ 由实际问题抽象出一元二次方程.‎ 专题:‎ 几何图形问题.‎ 分析:‎ 本题可根据长方形的周长可以用x表示宽的值,然后根据面积公式即可列出方程.‎ 解答:‎ 解:设长为xcm,‎ ‎∵长方形的周长为40cm,‎ ‎∴宽为=(20﹣x)(cm),‎ 得x(20﹣x)=64.‎ 故选B.‎ 点评:‎ 本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S=ab来解题的方法.‎ ‎ ‎ ‎6.(2014•孝感,第5题3分)已知是二元一次方程组的解,则m﹣n的值是(  )‎ ‎ ‎ A.‎ ‎1‎ B.‎ ‎2‎ C.‎ ‎3‎ D.‎ ‎4‎ 考点:‎ 二元一次方程组的解.‎ 专题:‎ 计算题.‎ 分析:‎ 将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.‎ 解答:‎ 解:将x=﹣1,y=2代入方程组得:,‎ 解得:m=1,n=﹣3,‎ 则m﹣n=1﹣(﹣3)=1+3=4.‎ 故选D 点评:‎ 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.‎ ‎7.(2014·台湾,第6题3分)若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?(  )‎ A. B. C. D. 分析:首先解方程组求得x、y的值,即可得到a、b的值,进而求得a+b的值.‎ 解:解方程组得: 则a=,b=,‎ 则a+b==.‎ 故选A.‎ 点评:此题主要考查了二元一次方程组解法,解方程组的基本思想是消元,正确解方程组是关键.‎ ‎8.(2014•滨州,第12题3分)王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)( )‎ ‎ ‎ A.‎ ‎6‎ B.‎ ‎7‎ C.‎ ‎8‎ D.‎ ‎9‎ ‎ ‎ 考点:‎ 二元一次方程的应用 分析:‎ 设购买x只中性笔,y只笔记本,根据题意得出:9.2<0.8x+1.2y≤10,进而求出即可.‎ 解答:‎ 解;设购买x只中性笔,y只笔记本,根据题意得出:‎ ‎9.2<0.8x+1.2y≤10,‎ 当x=2时,y=7,‎ 当x=3时,y=6,‎ 当x=5时,y=5,‎ 当x=6时,y=4,‎ 当x=8时,y=3,‎ 当x=9时,y=2,‎ 当x=11时,y=1,‎ 故一共有7种方案.‎ 故选:B.‎ 点评:‎ 此题主要考查了二元一次方程的应用,得出不等关系是解题关键.‎ ‎9.(2014年山东泰安,第7题3分)方程5x+2y=﹣9与下列方程构成的方程组的解为的是(  )‎ ‎ A.x+2y=1 B. 3x+2y=﹣8 C. 5x+4y=﹣3 D. 3x﹣4y=﹣8‎ 分析:将x与y的值代入各项检验即可得到结果.‎ 解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣8.故选D 点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.‎ ‎ ‎ 二.填空题 ‎1. ( 2014•福建泉州,第11题4分)方程组的解是  .‎ 考点:‎ 解二元一次方程组.‎ 专题:‎ 计算题.‎ 分析:‎ 方程组利用加减消元法求出解即可.‎ 解答:‎ 解:,‎ ‎①+②得:3x=6,即x=2,‎ 将x=2代入①得:y=2,‎ 则方程组的解为.‎ 故答案为:‎ 点评:‎ 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.‎ ‎ ‎ ‎2.(2014•浙江湖州,第18题分)解方程组.‎ 分析:方程组利用加减消元法求出解即可.‎ 解:,①+②得:5x=10,即x=2,‎ 将x=2代入①得:y=1,则方程组的解为.‎ 点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.‎ ‎3.(2014•滨州,第16题4分)某公园“6•1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备 34 元钱买门票.‎ 考点:‎ 二元一次方程组的应用.‎ 专题:‎ 应用题.‎ 分析:‎ 设大人门票为x,小孩门票为y,根据题目给出的等量关系建立方程组,然后解出x、y的值,再代入计算即可.‎ 解答:‎ 解:设大人门票为x,小孩门票为y,‎ 由题意,得:,‎ 解得:,‎ 则3x+2y=34.‎ 即王斌家计划去3个大人和2个小孩,需要34元的门票.‎ 故答案为:34.‎ 点评:‎ 本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,将实际问题转化为方程思想求解.‎ 三.解答题 ‎1. ( 2014•安徽省,第20题10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.‎ ‎(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?‎ ‎(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?‎ 考点: 一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.菁优网 分析: (1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.‎ ‎(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.‎ 解答: 解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得 ‎,‎ 解得.‎ 答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;‎ ‎(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,‎ ‎,‎ 解得x≥60.‎ a=100x+30y=100x+30(240﹣x)=70x+7200,‎ 由于a的值随x的增大而增大,所以当x=60时,a值最小,‎ 最小值=70×60+7200=11400(元).‎ 答:2014年该企业最少需要支付这两种垃圾处理费共11400元.‎ 点评: 本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;‎ ‎ ‎ ‎2. ( 2014•广西贺州,第20题6分)已知关于x、y的方程组的解为,求m、n的值.‎ 考点:‎ 二元一次方程组的解.‎ 专题:‎ 计算题.‎ 分析:‎ 将x与y的值代入方程组计算即可求出m与n的值.‎ 解答:‎ 解:将x=2,y=3代入方程组得:,‎ ‎②﹣①得: n=,即n=1,‎ 将n=1代入②得:m=1,‎ 则m=1,n=1.‎ 点评:‎ 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.‎ ‎ ‎ ‎3.(2014•温州,第23题12分)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E 五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表 参赛同学 答对题数 答错题数 未答题数 A ‎19‎ ‎0‎ ‎1‎ B ‎17‎ ‎2‎ ‎1‎ C ‎15‎ ‎2‎ ‎3‎ D ‎17‎ ‎1‎ ‎2‎ E ‎/‎ ‎/‎ ‎7‎ ‎(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;‎ ‎(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.‎ ‎①求E同学的答对题数和答错题数;‎ ‎②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)‎ 考点:‎ 二元一次方程组的应用;加权平均数.‎ 分析:‎ ‎(1)直接算出A,B,C,D四位同学成绩的总成绩,再进一步求得平均数即可;‎ ‎(2)①设E同学答对x题,答错y题,根据对错共20﹣7=13和总共得分58列出方程组成方程组即可;‎ ‎②根据表格分别算出每一个人的总成绩,与实际成绩对比:A为19×5=95分正确,B为17×5+2×(﹣2)=81分正确,C为15×5+2×(﹣2)=71错误,D为17×5+1×(﹣2)=83正确,E正确;所以错误的是E,多算7分,也就是答对的少一题,打错的多一题,由此得出答案即可.‎ 解答:‎ 解:(1)==82.5(分),‎ 答:A,B,C,D四位同学成绩的平均分是82.5分.‎ ‎(2)①设E同学答对x题,答错y题,由题意得 ‎,‎ 解得,‎ 答:E同学答对12题,答错1题.‎ ‎②C同学,他实际答对14题,答错3题,未答3题.‎ 点评:‎ 此题考查加权平均数的求法,一元二次方程组的实际运用,以及有理数的混合运算等知识,注意理解题意,正确列式解答.‎ ‎ ‎ ‎4.(2014•舟山,第21题8分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.‎ ‎(1)求每辆A型车和B型车的售价各为多少元.‎ ‎(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?‎ 考点:‎ 一元一次不等式组的应用;二元一次方程组的应用 分析:‎ ‎(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;‎ ‎(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.‎ 解答:‎ 解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则 ‎,‎ 解得 .‎ 答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;‎ ‎(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得 ‎,‎ 解得 2≤a≤3.‎ ‎∵a是正整数,‎ ‎∴a=2或a=3.‎ ‎∴共有两种方案:‎ 方案一:购买2辆A型车和4辆B型车;‎ 方案二:购买3辆A型车和3辆B型车.‎ 点评:‎ 本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.‎ ‎ ‎ ‎5.(2014•邵阳,第23题8分)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.‎ ‎(1)两种型号的地砖各采购了多少块?‎ ‎(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?‎ 考点:‎ 二元一次方程组的应用;一元一次不等式的应用 分析:‎ ‎(1)设彩色地砖采购x块,单色地砖采购y块,根据彩色地砖和单色地砖的总价为5600及地砖总数为100建立二元一次方程组求出其解即可;‎ ‎(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,根据采购地砖的费用不超过3200元建立不等式,求出其解即可.‎ 解答:‎ 解:(1)设彩色地砖采购x块,单色地砖采购y块,由题意,得 ‎,‎ 解得:.‎ 答:彩色地砖采购40块,单色地砖采购60块;‎ ‎(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,由题意,得 ‎80a+40(60﹣a)≤3200,‎ 解得:a≤20.‎ ‎∴彩色地砖最多能采购20块.‎ 点评:‎ 本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答时认真分析单价×数量=总价的关系建立方程及不等式是关键.‎ ‎6.(2014·云南昆明,第21题8分)某校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.‎ (1) 求A、B两种奖品单价各是多少元?‎ (2) 学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m ‎(件)之间的函数关系式,求出自变量m的取值范围,并确定最少费用W的值.‎ 考点:‎ 二元一次方程组的应用;一次函数的应用.‎ 分析:‎ (1) 设A、B两种奖品单价分别为元、元,由两个方程构成方程组,求出其解即可.‎ (2) 找出W与m之间的函数关系式(一次函数),由不等式组确定自变量m的取值范围,并由一次函数性质确定最少费用W的值.‎ 解答:‎ 解:(1)设A、B两种奖品单价分别为元、元,由题意,得 ‎ ,‎ 解得:.‎ 答:A、B两种奖品单价分别为10元、15元.‎ (2) 由题意,得 ‎ ‎ ‎ ‎ ‎ ‎ 由,解得:.‎ 由一次函数可知,随增大而减小 当时,W最小,最小为(元)‎ 答:当购买A种奖品75件,B种奖品25件时,费用W最小,最小为1125元.‎ 点评:‎ 本题考查了列二元一次方程组解实际问题的运用,不等式组的解法,一次函数的应用,解答时根据条件建立建立反映全题等量关系、不等关系、函数关系式关键.‎ ‎7. (2014•益阳,第19题,10分)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:‎ 销售时段 销售数量 销售收入 A种型号 B种型号 第一周 ‎3台 ‎5台 ‎1800元 第二周 ‎4台 ‎10台 ‎3100元 ‎(进价、售价均保持不变,利润=销售收入﹣进货成本)‎ ‎(1)求A、B两种型号的电风扇的销售单价;‎ ‎(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?‎ ‎(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.‎ 考点:‎ 二元一次方程组的应用;一元一次方程的应用;一元一次不等式的应用.‎ 分析:‎ ‎(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;‎ ‎(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5400元,列不等式求解;‎ ‎(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.‎ 解答:‎ 解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,‎ 依题意得:,‎ 解得:,‎ 答:A、B两种型号电风扇的销售单价分别为250元、210元;‎ ‎(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.‎ 依题意得:200a+170(30﹣a)≤5400,‎ 解得:a≤10.‎ 答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;‎ ‎(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,‎ 解得:a=20,‎ ‎∵a>10,‎ ‎∴在(2)的条件下超市不能实现利润1400元的目标.‎ 点评:‎ 本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.‎ ‎8. (2014•益阳,第20题,10分)如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.‎ ‎(1)求a,k的值;‎ ‎(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;‎ ‎(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.‎ ‎(第2题图)‎ 考点:‎ 二次函数综合题.‎ 分析:‎ ‎(1)先求出直线y=﹣3x+3与x轴交点A,与y轴交点B的坐标,再将A、B两点坐标代入y=a(x﹣2)2+k,得到关于a,k的二元一次方程组,解方程组即可求解;‎ ‎(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF与Rt△BQE中,用勾股定理分别表示出AQ2=AF2+QF2=1+m2,BQ2=BE2+EQ2=4+(3﹣m)2,由AQ=BQ,得到方程1+m2=4+(3﹣m)2,解方程求出m=2,即可求得Q点的坐标;‎ ‎(3)当点N在对称轴上时,由NC与AC不垂直,得出AC为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,此时,MF=NF=AF=CF=1,且AC⊥MN,则四边形AMCN为正方形,在Rt△AFN中根据勾股定理即可求出正方形的边长.‎ 解答:‎ 解:(1)∵直线y=﹣3x+3与x轴、y轴分别交于点A、B,‎ ‎∴A(1,0),B(0,3).‎ 又∵抛物线抛物线y=a(x﹣2)2+k经过点A(1,0),B(0,3),‎ ‎∴,解得,‎ 故a,k的值分别为1,﹣1;‎ ‎(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.‎ 在Rt△AQF中,AQ2=AF2+QF2=1+m2,‎ 在Rt△BQE中,BQ2=BE2+EQ2=4+(3﹣m)2,‎ ‎∵AQ=BQ,‎ ‎∴1+m2=4+(3﹣m)2,‎ ‎∴m=2,‎ ‎∴Q点的坐标为(2,2);‎ ‎(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.‎ 又∵对称轴x=2是AC的中垂线,‎ ‎∴M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,其坐标为(2,1).‎ 此时,MF=NF=AF=CF=1,且AC⊥MN,‎ ‎∴四边形AMCN为正方形.‎ 在Rt△AFN中,AN==,即正方形的边长为.‎ 点评:‎ 本题是二次函数的综合题型,其中涉及到的知识点有二元一次方程组的解法,等腰三角形的性质,勾股定理,二次函数的性质,正方形的判定与性质,综合性较强,难度适中.‎ ‎9. (2014年江苏南京,第25‎ 题)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.‎ ‎(1)小明骑车在平路上的速度为  km/h;他途中休息了  h;‎ ‎(2)求线段AB、BC所表示的y与x之间的函数关系式;‎ ‎(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?‎ ‎(第3题图)‎ 考点:一次函数的解析式的运用,一元一次方程的运用 分析: (1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;‎ ‎(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;‎ ‎(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,根据距离甲地的距离相等建立方程求出其解即可.‎ 解答:(1)小明骑车在平路上的速度为:4.5÷0.3=15,‎ ‎∴小明骑车在上坡路的速度为:15﹣5=10,‎ 小明骑车在上坡路的速度为:15+5=20.‎ ‎∴小明返回的时间为:(6.5﹣4.5)÷2+0.3=0.4小时,‎ ‎∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.‎ ‎∴小明途中休息的时间为:1﹣0.5﹣0.4=0.1小时.‎ 故答案为:15,0.1‎ ‎(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).‎ 小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).‎ 设直线AB的解析式为y=k1x+b1,由题意,得,解得:,‎ ‎∴y=10x+1.5(0.3≤x≤0.5);‎ 设直线BC的解析式为y=k2+b2,由题意,得,解得:,‎ ‎∴y=﹣20x+16.5(0.5<x≤0.6)‎ ‎(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意,得 ‎10t+1.5=﹣20(t+0.15)+16.5,解得:t=0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.‎ 点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.‎ ‎10. (2014•泰州,第21题,10分)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.‎ 考点:‎ 二元一次方程组的应用 分析:‎ 设该市去年外来人数为x万人,外出旅游的人数为y万人,根据总人数为226万人,去年同期外来旅游比外出旅游的人数多20万人,列方程组求解.‎ 解答:‎ 解:设该市去年外来人数为x万人,外出旅游的人数为y万人,‎ 由题意得,,‎ 解得:,‎ 则今年外来人数为:100×(1+30%)=130(万人),‎ 今年外出旅游人数为:80×(1+20%)=96(万人).‎ 答:该市今年外来人数为130万人,外出旅游的人数为96万人.‎ 点评:‎ 本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.‎ ‎11. (2014•扬州,第26题,10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.‎ ‎(1)已知T(1,﹣1)=﹣2,T(4,2)=1.‎ ‎①求a,b的值;‎ ‎②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;‎ ‎(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?‎ 考点:‎ 分式的混合运算;解二元一次方程组;一元一次不等式组的整数解 分析:‎ ‎(1)①已知两对值代入T中计算求出a与b的值;‎ ‎②根据题中新定义化简已知不等式,根据不等式组恰好有3个整数解,求出p的范围即可;‎ ‎(2)由T(x,y)=T(y,x)列出关系式,整理后即可确定出a与b的关系式.‎ 解答:‎ 解:(1)①根据题意得:T(1,﹣1)==﹣2,即a﹣b=﹣2;‎ T=(4,2)==1,即2a+b=5,‎ 解得:a=1,b=3;‎ ‎②根据题意得:,‎ 由①得:m≥﹣;‎ 由②得:m<,‎ ‎∴不等式组的解集为﹣≤m<,‎ ‎∵不等式组恰好有3个整数解,即m=0,1,2,‎ ‎∴2≤<3,‎ 解得:﹣2≤p<﹣;‎ ‎(2)由T(x,y)=T(y,x),得到=,‎ 整理得:(x2﹣y2)(2b﹣a)=0,‎ ‎∵T(x,y)=T(y,x)对任意实数x,y都成立,‎ ‎∴2b﹣a=0,即a=2b.‎ 点评:‎ 此题考查了分式的混合运算,解二元一次方程组,以及一元一次不等式组的整数解,弄清题中的新定义是解本题的关键.‎ ‎12.(2014•呼和浩特,第22题7分)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格. 我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和 410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?‎ 考点:‎ 二元一次方程组的应用.‎ 分析:‎ 设基本电价为x元/千瓦时,提高电价为y元/千瓦时,根据2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元,列方程组求解.‎ 解答:‎ 解:设基本电价为x元/千瓦时,提高电价为y元/千瓦时,‎ 由题意得,,‎ 解得:,‎ 则四月份电费为:160×0.6=96(元),‎ 五月份电费为:180×0.6+230×0.7=108+161=269(元).‎ 答:这位居民四月份的电费为96元,五月份的电费为269元.‎ 点评:‎ 本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.‎ ‎13.(2014•滨州,第19题3分)(2)解方程组:.‎ 考点:‎ 解二元一次方程组;‎ 专题:‎ 计算题.‎ 分析:‎ ‎(2)方程组利用加减消元法求出解即可.‎ 解答:‎ 解:(2),‎ ‎①×3+②得:10x=20,即x=2,‎ 将x=2代入①得:y=﹣1,‎ 则方程组的解为.‎ 点评:‎ 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.‎ ‎ ‎