• 302.50 KB
  • 2022-03-30 发布

2020中考数学复习压轴题动点问题专题提升练习28六大动点必考相关问题29无答案

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
2020中考数学复习压轴题《动点问题》专题提升练习(六大动点必考相关问题)题型一动点与函数图像关系1.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是(  )A.B.C.D.2.如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B、C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E.设BP=x,△PCE面积为y,则y与x的函数关系式是(  )A.y=2x+1B.C.D.y=2x 3.如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C.过点P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为( ).题型二动点与图形面积问题1.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减小2.如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点E应运动到() A.点C处B.点D处C.点B处D.点A处3.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=_______°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?题型三动点与等腰三角形问题1.如图1,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C 匀速运动,它们的速度均为1cm/s.连结PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图2,连结PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;(3)当t为何值时,△APQ是等腰三角形?图1图22.如图,已知抛物线y=ax2-2ax+b与x轴交于A、B(3, 0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.(1)求抛物线的解析式(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;  3.已知:如图,抛物线y=ax2+bx+c经过A(1, 0)、B(5, 0)、C(0, 5)三点.(1)求抛物线的函数关系式;(2)若过点C的直线y=kx+b与抛物线相交于点E (4, m),请求出△CBE的面积S的值;(3)写出二次函数值大于一次函数值的x的取值范围;(4)在抛物线上是否存在点P使得△ABP为等腰三角形?若存在,请指出一共有几个满足条件的点P,并求出其中一个点的坐标;若不存在这样的点P,请说明理由. 题型四动点与线段最值问题 1.点P为抛物线上直线AM下方一动点,E为线段AM上一动点,且PE//Y轴,当点P的坐标为多少时,线段PE的长度有最大值?2.如图1,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连结BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.图1备用图3.如图,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB; (3)在x轴上找一点P,使得△PCD的周长最小,求出点P的坐标.题型五动点与切线问题1.如图1,抛物线y=-14x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.(1)求抛物线的解析式;(2)若PA∶PB=3∶1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得☉C同时与x轴和直线AP相切,如果存在,请求出点C的坐标,如果不存在,请说明理由. 2.如图1,在Rt△ABC中,∠ACB=90°,cosB=35,BC=3,P是射线AB上的一个动点,以P为圆心、PA为半径的☉P与射线AC的另一个交点为D,直线PD交直线BC于点E.(1)当PA=1时,求CE的长;(2)如果点P在边AB上,当☉P与以C为圆心、CE为半径的☉C内切时,求☉P的半径;(3)设线段BE的中点为Q,射线PQ与☉P相交于点F,点P在运动过程中,当PE∥CF时,求AP的长.题型六动点与辅助圆问题1.如图,B是线段AC的中点,过点C的直线l与AC成50°的角,在直线l上取一点P,使得∠APB=30°,则满足条件的点P的个数是()A.1个B.2个C.3个D.无数个 2.如图,矩形CDEF是由矩形ABCG(AB<BC)绕点C顺时针旋转90°而得,∠APE的顶点在线段BD上移动,则能够使∠APE为直角的点P的个数是_______.3.如图,已知足球球门宽AB约为5米,一球员从距B点5的C点(点A、B、C均在球场底线上),沿与AC成45°角的CD方向带球.试问,该球员能否在射线CD上找到一点P,使得点P为最佳射门点(即∠APB最大)?若能找到,求出这时点P与点C的距离;若找不到,请说明理由.