- 555.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2012年全国中考数学试题分类解析汇编(159套63专题)
专题50:圆与圆的位置关系
一、选择题
1. (2012上海市4分)如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是【 】
A. 外离 B. 相切 C. 相交 D. 内含
【答案】D。
【考点】圆与圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。因此,
∵两个圆的半径分别为6和2,圆心距为3,6﹣2=4,4>3,即两圆圆心距离小于两圆半径之差,
∴这两个圆的位置关系是内含。故选D。
2. (2012浙江杭州3分)若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是【 】
A.内含 B.内切 C.外切 D.外离
【答案】B。
【考点】圆与圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。因此,
∵两圆的半径分别为2cm和6cm,圆心距为4cm.则d=6﹣2=4。
∴两圆内切。故选B。
3. (2012浙江宁波3分)如图,用邻边分别为a,b(a<b)的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是【 】
A.b=a B.b= C.b= D.b=
【答案】D。
【考点】圆锥的计算。
【分析】∵半圆的直径为a,∴半圆的弧长为。
∵把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,
∴设小圆的半径为r,则:,解得:
如图小圆的圆心为B,半圆的圆心为C,作BA⊥CA于A点,
则由勾股定理,得:AC2+AB2=BC2,
即:,整理得:b=。故选D。
4. (2012浙江温州4分)已知⊙O1与⊙O2外切,O1O2=8cm,⊙O1的半径为5cm,则⊙O2的半径是【 】
A. 13cm. B. 8cm C. 6cm D. 3cm
【答案】D。
【考点】圆与圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
因此,根据两圆外切,圆心距等于两圆半径之和,得该圆的半径是8-5=3(cm)。故选D。
5. (2012江苏常州2分)已知两圆半径分别为7,3,圆心距为4,则这两圆的位置关系为【 】
A.外离 B.内切 C.相交 D.内含
【答案】B。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。因此,
∵两半径之差7-3等于两圆圆心距4,∴两圆内切。故选B。
6. (2012江苏宿迁3分)若⊙O1,⊙O2的半径是r1=2, r2=4,圆心距d=5,则这两个圆的位置关系是【 】
A.内切 B.相交 C.外切 D.外离
【答案】B。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。因此,
∵r1+r2=6,r2-r1=2,d=5,∴r2-r1<d r1+r2。∴这两个圆的位置关系是相交。故选B。
7. (2012江苏扬州3分)已知⊙O1、⊙O2的半径分别为3cm、5cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系是【 】
A.外切 B.相交 C.内切 D.内含
【答案】A。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。因此,
∵3+5=8,即两圆圆心距离等于两圆半径之和,∴两圆外切。故选A。
8. (2012福建福州4分)⊙O1和⊙O2的半径分别是3cm和4cm,如果O1O2=7cm,则这两圆的位置关系是【 】
A.内含 B.相交 C.外切 D.外离
【答案】C。
【考点】圆与圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。因此,
∵ ⊙O1、⊙O2的半径分别是3cm、4cm,O1O2=7cm,
又∵ 3+4=7,∴⊙O1和⊙O2的位置关系是外切。故选C。
9. (2012湖南常德3分)若两圆的半径分别为2和4,且圆心距为7,则两圆的位置关系为【 】
A. 外切 B. 内切 C. 外离 D. 相交
【答案】C。
【考点】圆与圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
∵2+4=6<7,即两圆半径之和小于圆心距,∴两圆外离。故选C。
10. (2012四川南充3分)如图,平面直角坐标系中,⊙O半径长为1.点⊙P(a,0),⊙P的半径长为2,把⊙P向左平移,当⊙P与⊙O相切时,a的值为【 】
(A)3 (B)1 (C)1,3 (D)±1,±3
【答案】D。
【考点】两圆的位置关系,平移的性质。
【分析】⊙P与⊙O相切时,有内切和外切两种情况:
∵⊙O 的圆心在原点,当⊙P与⊙O外切时,圆心距为1+2=3,
当⊙P与⊙O第内切时,圆心距为2-1=1,
当⊙P与⊙O第一次外切和内切时,⊙P圆心在x轴的正半轴上,
∴⊙P(3,0)或(1,0)。∴a=3或1。
当⊙P与⊙O第二次外切和内切时,⊙P圆心在x轴的负半轴上,
∴⊙P(-3,0)或(-1,0)。∴a =-3或-1 。故选D。
11. (2012四川成都3分)已知两圆外切,圆心距为5cm,若其中一个圆的半径是3cm,则另一个圆的半径是【 】
A. 8cm B.5cm C.3cm D.2cm
【答案】D。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。因此,
∵两圆外切,圆心距为5cm,若一个圆的半径是3cm,∴另一个圆的半径=5﹣3=2(cm)。故选D。
12. (2012四川乐山3分)⊙O1的半径为3厘米,⊙O2的半径为2厘米,圆心距O1O2=5厘米,这两圆的位置关系是【 】
A.内含 B.内切 C.相交 D.外切
【答案】D。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。因此,
∵⊙O1的半径r=3,⊙O2的半径r=2,∴3+2=5。
∵两圆的圆心距为O1O2=5,∴两圆的位置关系是外切。故选D。
13. (2012四川巴中3分) 已知两圆的半径分别为1和3,当这两圆内含时,圆心距d的范围是【 】
A. 0