• 553.00 KB
  • 2021-05-10 发布

2014年上海市中考数学试卷及答案

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2014年上海市初中毕业统一学业考试 数学试卷 ‎(满分150分,考试时间100分钟)‎ 考生注意:‎ ‎1.本试卷含三个大题,共25题;‎ ‎2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;‎ ‎3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.‎ 一、选择题:(本大题共6题,每题4分,满分24分)‎ ‎【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】‎ ‎1.计算的结果是 ‎(A) ; (B) ; (C) ; (D) .‎ ‎2.据统计,2013年上海市全社会用于环境保护的资金约为60 800 000 000元,这个数用科学记数法表示为 ‎(A) 608×108; (B) 60.8×109; (C) 6.08×1010; (D) 6.08×1011.‎ ‎3.如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是 a c ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ 图1‎ c ‎(A) ; (B) ; (C) ; (D) .‎ ‎4.如图,已知直线a、b被直线c所截,那么∠1的同位角是 ‎(A) ∠2; (B) ∠3; (C) ∠4; (D) ∠5.‎ ‎5.某市测得一周PM2.5的日均值(单位:微克每立方米)如下:‎ ‎50,40,75,50,37,50,40,‎ 这组数据的中位数和众数分别是 ‎(A) 50和50; (B) 50和40; (C) 40和50; (D) 40和40.‎ A B C D 图2‎ A ‎6.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是 ‎(A) △ABD与△ABC的周长相等;‎ ‎(B) △ABD与△ABC的面积相等;‎ ‎(C) 菱形的周长等于两条对角线之和的两倍;‎ ‎(D) 菱形的面积等于两条对角线之积的两倍.‎ 二、填空题:(本大题共12题,每题4分,满分48分)‎ ‎【请将结果直接填入答题纸的相应位置】‎ ‎7.计算:a(a+1)= ▲ .‎ ‎8.函数的定义域是 ▲ .‎ ‎9.不等式组的解集是 ▲ .‎ ‎10.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔 ▲ 支.‎ ‎11.如果关于x的方程x2-2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是 ▲ .‎ ‎12.已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面‎10米高的地方,那么物体所经过的路程为 ▲ 米.‎ ‎13.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是 ▲ .‎ ‎14.已知反比例函数(k是常数,k≠0),在其图像所在的每一个象限内,y的值随着x的值的增大而增大,那么这个反比例函数的解析式是 ▲ (只需写一个).‎ 一 三 二 四 五 次数 ‎2‎ ‎4‎ ‎6‎ ‎8‎ ‎0‎ 成绩(环)‎ 甲 乙 丙 图4‎ ‎12‎ ‎10‎ 成绩(环)‎ ‎15.如图3,已知在平行四边形ABCD中,点E在边AB上,且AB=3EB.设,,那么= ▲ (结果用、表示).‎ A B C D E D′‎ C′‎ 图5‎ A A B C E 图3‎ D A ‎16.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图4所示,那么三人中成绩最稳定的是 ▲ .‎ ‎17.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是‎2a-b”,例如这组数中的第三个数“‎3”‎是由“2×2-‎1”‎得到的,那么这组数中y表示的数为 ▲ .‎ ‎18.如图5,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为 ▲ (用含t的代数式表示).‎ 三、解答题:(本大题共7题,满分78分)‎ ‎19.(本题满分10分)‎ 计算:.‎ ‎20.(本题满分10分)‎ 解方程:.‎ ‎21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)‎ 图6‎ 图6‎ 已知水银体温计的读数y(℃)与水银柱的长度x(㎝)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图6),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.‎ 水银柱的长度x(㎝)‎ ‎4.2‎ ‎…‎ ‎8.2‎ ‎9.8‎ 体温计的读数y(℃)‎ ‎35.0‎ ‎…‎ ‎40.0‎ ‎42.0‎ ‎(1)求y关于x的函数关系式(不需要写出函数的定义域);‎ ‎(2)用该体温计测体温时,水银柱的长度为6.2㎝,求此时体温计的读数.‎ ‎22.(本题满分10分,第(1)、(2)小题满分各5分)‎ A B C D E H 图7‎ A 如图7,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.‎ ‎(1)求sinB的值;‎ ‎(2)如果CD=,求BE的值.‎ ‎23.(本题满分12分,第(1)、(2)小题满分各6分)‎ A F B C E 图8‎ D A 已知:如图8,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.‎ ‎(1)求证:四边形ACED是平行四边形;‎ ‎(2)联结AE,交BD于点G,求证:.‎ ‎24.(本题满分12分,第(1)、(2)、(3)小题满分各4分)‎ 在平面直角坐标系中(如图9),已知抛物线与x轴交于点A(-1,0)和点B,与y轴交于点C(0,-2).‎ ‎(1)求该抛物线的表达式,并写出其对称轴;‎ ‎(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;‎ y O ‎1‎ x 图9‎ O ‎(3)点D为该抛物线的顶点,设点P(t,0),且t﹥3,如果△BDP和△CDP的面积相等,求t的值.‎ ‎25.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)‎ 如图10,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.‎ ‎(1)当圆C经过点A时,求CP的长;‎ ‎(2)联结AP,当AP∥CG时,求弦EF的长;‎ G A B E F D C P 图10‎ A ‎(3)当△AGE是等腰三角形时,求圆C的半径长.‎ A B D C 备用图 A ‎2014年上海市初中毕业统一学业考试 数学参考答案 一、选择题(每小题4分,共24分)‎ ‎1. B ‎ ‎2. C ‎ ‎3. C ‎ ‎4. A ‎ ‎5. A ‎ ‎6. B ‎ 二、填空题(每小题4分,共48分)‎ ‎7..‎ ‎8..‎ ‎9..‎ ‎10..‎ ‎11..‎ ‎12..‎ ‎13..‎ ‎14.(只需写一个).‎ ‎15..‎ ‎16.乙.‎ ‎ [来源:Zxxk.Com][来源:Z&xx&k.Com]‎ ‎17. -9.‎ ‎18.‎ 三、解答题(本题共7题,满分78分)‎ ‎19.(本题满分10分)‎ 计算:.‎ ‎20.(本题满分10分)‎ 解方程:.‎ ‎21.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)‎ ‎(1)‎ ‎(2)37.5‎ ‎22.(本题满分10分,每小题满分各5分)‎ om]‎ ‎23.(本题满分12分,每小题满分各6分)‎ 已知:如图,梯形ABCD中,AD//BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD.[来源:学,科,网]‎ (1) 求证:四边形ACED是平行四边形;‎ ‎(2)联结AE,交BD于点G,求证:.‎ ‎24.(本题满分12分,每小题满分各4分)‎ ‎25.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)‎