• 431.00 KB
  • 2021-05-10 发布

湖北省十堰市中考数学试卷

  • 25页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2019年湖北省十堰市中考数学试卷 一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.‎ ‎1.(3分)下列实数中,是无理数的是(  )‎ A.0 B.﹣3 C. D.‎ ‎2.(3分)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=(  )‎ A.50° B.45° C.40° D.30°‎ ‎3.(3分)如图是一个L形状的物体,则它的俯视图是(  )‎ A. B. C. D.‎ ‎4.(3分)下列计算正确的是(  )‎ A.2a+a=2a2 B.(﹣a)2=﹣a2 ‎ C.(a﹣1)2=a2﹣1 D.(ab)2=a2b2‎ ‎5.(3分)矩形具有而平行四边形不一定具有的性质是(  )‎ A.对边相等 B.对角相等 ‎ C.对角线相等 D.对角线互相平分 ‎6.(3分)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):‎ 组员 甲 乙 丙 丁 戊 平均成绩 众数 得分 ‎81‎ ‎77‎ ‎■‎ ‎80‎ ‎82‎ ‎80‎ ‎■‎ 则被遮盖的两个数据依次是(  )‎ A.80,80 B.81,80 C.80,2 D.81,2‎ ‎7.(3分)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是(  )‎ A.﹣=15 B.﹣=15 ‎ C.﹣=20 D.﹣=20‎ ‎8.(3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=(  )‎ A.3 B.3 C.4 D.2‎ ‎9.(3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=(  )‎ A.50 B.60 C.62 D.71‎ ‎10.(3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=(  )‎ A.﹣20 B.﹣16 C.﹣12 D.﹣8‎ 二、填空题(本题有6个小题,每小题3分,共18分)‎ ‎11.(3分)分解因式:a2+2a=   .‎ ‎12.(3分)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为   .‎ ‎13.(3分)我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:‎ 若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有   人.‎ ‎14.(3分)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m=   .‎ ‎15.(3分)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为   .‎ ‎16.(3分)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE=   .‎ 三、解答题(本题有9个小题,共72分)‎ ‎17.(5分)计算:(﹣1)3+|1﹣|+.‎ ‎18.(6分)先化简,再求值:(1﹣)÷(﹣2),其中a=+1.‎ ‎19.(7分)如图,拦水坝的横断面为梯形ABCD,AD=3m,坝高AE=DF=6m,坡角α=45°,β=30°,求BC的长.‎ ‎20.(7分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.‎ ‎(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是   .‎ ‎(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.‎ ‎21.(7分)已知于x的元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.‎ ‎(1)求a的取值范围;‎ ‎(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.‎ ‎22.(8分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BAC.‎ ‎(1)求证:DE是⊙O的切线;‎ ‎(2)若AB=3BD,CE=2,求⊙O的半径.‎ ‎23.(10分)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50.‎ ‎(1)当31≤x≤50时,y与x的关系式为   ;‎ ‎(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?‎ ‎(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.‎ ‎24.(10分)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.‎ ‎(1)填空:∠CDE=   (用含α的代数式表示);‎ ‎(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;‎ ‎(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.‎ ‎25.(12分)已知抛物线y=a(x﹣2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点为D.‎ ‎(1)求抛物线的解析式,并写出D点的坐标;‎ ‎(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;‎ ‎(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数.‎ ‎2019年湖北省十堰市中考数学试卷 参考答案与试题解析 一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.‎ ‎1.(3分)下列实数中,是无理数的是(  )‎ A.0 B.﹣3 C. D.‎ ‎【分析】根据无理数是无限不循环小数,可得答案.‎ ‎【解答】解:A、0是有理数,故A错误;‎ B、﹣3是有理数,故B错误;‎ C、是有理数,故C错误;‎ D、是无理数,故D正确;‎ 故选:D.‎ ‎【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.‎ ‎2.(3分)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=(  )‎ A.50° B.45° C.40° D.30°‎ ‎【分析】根据垂直的定义和余角的定义列式计算得到∠3,根据两直线平行,内错角相等可得∠3=∠1.‎ ‎【解答】解:∵直线AB⊥AC,‎ ‎∴∠2+∠3=90°.‎ ‎∵∠1=50°,‎ ‎∴∠3=90°﹣∠1=40°,‎ ‎∵直线a∥b,‎ ‎∴∠1=∠3=40°,‎ 故选:C.‎ ‎【点评】本题考查了平行线的性质,余角角的定义,熟记性质并准确识图是解题的关键.‎ ‎3.(3分)如图是一个L形状的物体,则它的俯视图是(  )‎ A. B. C. D.‎ ‎【分析】找到从上面看所得到的图形即可.‎ ‎【解答】解:从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度.‎ 故选:B.‎ ‎【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.‎ ‎4.(3分)下列计算正确的是(  )‎ A.2a+a=2a2 B.(﹣a)2=﹣a2 ‎ C.(a﹣1)2=a2﹣1 D.(ab)2=a2b2‎ ‎【分析】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案.‎ ‎【解答】解:A、2a+a=3a,故此选项错误;‎ B、(﹣a)2=a2,故此选项错误;‎ C、(a﹣1)2=a2﹣2a+1,故此选项错误;‎ D、(ab)2=a2b2,正确.‎ 故选:D.‎ ‎【点评】此题主要考查了合并同类项以及积的乘方运算、完全平方公式,正确掌握相关运算法则是解题关键.‎ ‎5.(3分)矩形具有而平行四边形不一定具有的性质是(  )‎ A.对边相等 B.对角相等 ‎ C.对角线相等 D.对角线互相平分 ‎【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.‎ ‎【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.‎ 故选:C.‎ ‎【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.‎ ‎6.(3分)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):‎ 组员 甲 乙 丙 丁 戊 平均成绩 众数 得分 ‎81‎ ‎77‎ ‎■‎ ‎80‎ ‎82‎ ‎80‎ ‎■‎ 则被遮盖的两个数据依次是(  )‎ A.80,80 B.81,80 C.80,2 D.81,2‎ ‎【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.‎ ‎【解答】解:根据题意得:‎ ‎80×5﹣(81+77+80+82)=80(分),‎ 则丙的得分是80分;‎ 众数是80,‎ 故选:A.‎ ‎【点评】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.‎ ‎7.(3分)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是(  )‎ A.﹣=15 B.﹣=15 ‎ C.﹣=20 D.﹣=20‎ ‎【分析】设原计划每天铺设钢轨x米,根据如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务可列方程.‎ ‎【解答】解:设原计划每天铺设钢轨x米,可得:,‎ 故选:A.‎ ‎【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数以时间为等量关系列出方程.‎ ‎8.(3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=(  )‎ A.3 B.3 C.4 D.2‎ ‎【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.‎ ‎【解答】解:连接AC,如图,‎ ‎∵BA平分∠DBE,‎ ‎∴∠1=∠2,‎ ‎∵∠1=∠CDA,∠2=∠3,‎ ‎∴∠3=∠CDA,‎ ‎∴AC=AD=5,‎ ‎∵AE⊥CB,‎ ‎∴∠AEC=90°,‎ ‎∴AE===2.‎ 故选:D.‎ ‎【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了勾股定理.‎ ‎9.(3分)一列数按某规律排列如下:,,,,,,,,,,…,若第 n个数为,则n=(  )‎ A.50 B.60 C.62 D.71‎ ‎【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决.‎ ‎【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,‎ ‎∴分母为11开头到分母为1的数有11个,分别为,‎ ‎∴第n个数为,则n=1+2+3+4+…+10+5=60,‎ 故选:B.‎ ‎【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.‎ ‎10.(3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=(  )‎ A.﹣20 B.﹣16 C.﹣12 D.﹣8‎ ‎【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.‎ ‎【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:‎ ‎ 则△BDE≌△FDE,‎ ‎∴BD=FD,BE=FE,∠DFE=∠DBE=90°‎ ‎ 易证△ADF∽△GFE ‎∴,‎ ‎∵A(﹣8,0),B(﹣8,4),C(0,4),‎ ‎∴AB=OC=EG=4,OA=BC=8,‎ ‎∵D、E在反比例函数y=的图象上,‎ ‎∴E(,4)、D(﹣8,)‎ ‎∴OG=EC=,AD=﹣,‎ ‎∴BD=4+,BE=8+‎ ‎∴,‎ ‎∴AF=,‎ ‎ 在Rt△ADF中,由勾股定理:AD2+AF2=DF2‎ ‎ 即:(﹣)2+22=(4+)2‎ ‎ 解得:k=﹣12‎ 故选:C.‎ ‎【点评】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的图象和性质等知识,发现BD与BE的比是1:2是解题的关键.‎ 二、填空题(本题有6个小题,每小题3分,共18分)‎ ‎11.(3分)分解因式:a2+2a= a(a+2) .‎ ‎【分析】直接提公因式法:观察原式a2+2a,找到公因式a,提出即可得出答案.‎ ‎【解答】解:a2+2a=a(a+2).‎ ‎【点评】‎ 考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.‎ ‎12.(3分)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为 24 .‎ ‎【分析】根据菱形的对角线互相平分可得BO=DO,然后求出OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求出CD,然后根据菱形的周长公式计算即可得解.‎ ‎【解答】解:∵四边形ABCD是菱形,‎ ‎∴AB=BC=CD=AD,BO=DO,‎ ‎∵点E是BC的中点,‎ ‎∴OE是△BCD的中位线,‎ ‎∴CD=2OE=2×3=6,‎ ‎∴菱形ABCD的周长=4×6=24;‎ 故答案为:24.‎ ‎【点评】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.‎ ‎13.(3分)我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:‎ 若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有 1400 ‎ 人.‎ ‎【分析】先根据及格人数及其对应百分比求得总人数,总人数乘以优秀对应的百分比求得其人数,继而用总人数乘以样本中优秀、良好人数所占比例.‎ ‎【解答】解:∵被调查的总人数为28÷28%=100(人),‎ ‎∴优秀的人数为100×20%=20(人),‎ ‎∴估计成绩为优秀和良好的学生共有2000×=1400(人),‎ 故答案为:1400.‎ ‎【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.‎ ‎14.(3分)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m= ﹣3或4 .‎ ‎【分析】利用新定义得到[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,整理得到(2m﹣1)2﹣49=0,然后利用因式分解法解方程.‎ ‎【解答】解:根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,‎ ‎(2m﹣1)2﹣49=0,‎ ‎(2m﹣1+7)(2m﹣1﹣7)=0,‎ ‎2m﹣1+7=0或2m﹣1﹣7=0,‎ 所以m1=﹣3,m2=4.‎ 故答案为﹣3或4.‎ ‎【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.‎ ‎15.(3分)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为 6π .‎ ‎【分析】根据图形可知,阴影部分的面积是半圆的面积与扇形ABC 的面积之和减去半圆的面积.‎ ‎【解答】解:由图可得,‎ 图中阴影部分的面积为:=6π,‎ 故答案为:6π.‎ ‎【点评】本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.‎ ‎16.(3分)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE= 6 .‎ ‎【分析】作DH⊥AE于H,如图,由于AF=4,则△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,当BF为此圆的切线时,∠ABF最大,即BF⊥AF,利用勾股定理计算出BF=3,接着证明△ADH≌△ABF得到DH=BF=3,然后根据三角形面积公式求解.‎ ‎【解答】解:作DH⊥AE于H,如图,‎ ‎∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,‎ ‎∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,‎ 在Rt△ABF中,BF==3,‎ ‎∵∠EAF=90°,‎ ‎∴∠BAF+∠BAH=90°,‎ ‎∵∠DAH+∠BAH=90°,‎ ‎∴∠DAH=∠BAF,‎ 在△ADH和△ABF中 ‎,‎ ‎∴△ADH≌△ABF(AAS),‎ ‎∴DH=BF=3,‎ ‎∴S△ADE=AE•DH=×3×4=6.‎ 故答案为6.‎ ‎【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.‎ 三、解答题(本题有9个小题,共72分)‎ ‎17.(5分)计算:(﹣1)3+|1﹣|+.‎ ‎【分析】原式利用乘方的意义,绝对值的代数意义,以及立方根定义计算即可求出值.‎ ‎【解答】解:原式=﹣1+﹣1+2=.‎ ‎【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.‎ ‎18.(6分)先化简,再求值:(1﹣)÷(﹣2),其中a=+1.‎ ‎【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.‎ ‎【解答】解:(1﹣)÷(﹣2)‎ ‎=‎ ‎=‎ ‎=,‎ 当a=+1时,原式=.‎ ‎【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.‎ ‎19.(7分)如图,拦水坝的横断面为梯形ABCD,AD=3m,坝高AE=DF=6m,坡角α=45°,β=30°,求BC的长.‎ ‎【分析】过A点作AE⊥BC于点E,过D作DF⊥BC于点F,得到四边形AEFD是矩形,根据矩形的性质得到AE=DF=6,AD=EF=3,解直角三角形即可得到结论.‎ ‎【解答】解:过A点作AE⊥BC于点E,过D作DF⊥BC于点F,‎ 则四边形AEFD是矩形,有AE=DF=6,AD=EF=3,‎ ‎∵坡角α=45°,β=30°,‎ ‎∴BE=AE=6,CF=DF=6,‎ ‎∴BC=BE+EF+CF=6+3+6=9+6,‎ ‎∴BC=(9+6)m,‎ 答:BC的长(9+6)m.‎ ‎【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形和矩形,利用锐角三角函数的概念和坡度的概念求解.‎ ‎20.(7分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.‎ ‎(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是  .‎ ‎(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.‎ ‎【分析】(1)直接利用概率公式计算可得;‎ ‎(2)先画出树状图展示所有6种等可能的结果数,再找出恰好1个白球、1个黄球的结果数,然后根据概率公式求解;‎ ‎【解答】解:(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是,‎ 故答案为:;‎ ‎(2)画树状图为:‎ ‎,‎ 共有6种等可能的结果数,取出的两个球中恰好1个白球、1个黄球的有3种结果,‎ 所以取出的两个球中恰好1个白球、1个黄球的概率为.‎ ‎【点评】‎ 本题考查了列表法与树状图法:运用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.‎ ‎21.(7分)已知于x的元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.‎ ‎(1)求a的取值范围;‎ ‎(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.‎ ‎【分析】(1)根据根的判别式,可得到关于a的不等式,则可求得a的取值范围;‎ ‎(2)由根与系数的关系,用a表示出两根积、两根和,由已知条件可得到关于a的不等式,则可求得a的取值范围,再求其值即可.‎ ‎【解答】解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2,‎ ‎∴△>0,即(﹣6)2﹣4(2a+5)>0,‎ 解得a<2;‎ ‎(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5,‎ ‎∵x1,x2满足x12+x22﹣x1x2≤30,‎ ‎∴(x1+x2)2﹣3x1x2≤30,‎ ‎∴36﹣3(2a+5)≤30,‎ ‎∴a≥﹣,∵a为整数,‎ ‎∴a的值为﹣1,0,1.‎ ‎【点评】本题主要考查根与系数的关系及根的判别式,利用根的判别式求得k的取值范围是解题的关键,注意方程根的定义的运用.‎ ‎22.(8分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BAC.‎ ‎(1)求证:DE是⊙O的切线;‎ ‎(2)若AB=3BD,CE=2,求⊙O的半径.‎ ‎【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可;‎ ‎(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.‎ ‎【解答】解:(1)如图,连接OD,AD,‎ ‎∵AC是直径,‎ ‎∴∠ADC=90°,‎ ‎∴AD⊥BC,‎ ‎∵AB=AC,‎ ‎∴∠CAD=∠BAD=∠BAC,‎ ‎∵∠CDE=∠BAC.‎ ‎∴∠CDE=∠CAD,‎ ‎∵OA=OD,‎ ‎∴∠CAD=∠ADO,‎ ‎∵∠ADO+∠ODC=90°,‎ ‎∴∠ODC+∠CDE=90°‎ ‎∴∠ODE=90°‎ 又∵OD是⊙O的半径 ‎∴DE是⊙O的切线;‎ ‎(2)解:∵AB=AC,AD⊥BC,‎ ‎∴BD=CD,‎ ‎∵AB=3BD,‎ ‎∴AC=3DC,‎ 设DC=x,则AC=3x,‎ ‎∴AD==2x,‎ ‎∵∠CDE=∠CAD,∠DEC=∠AED,‎ ‎∴△CDE∽△DAE,‎ ‎∴=,即==‎ ‎∴DE=4,x=,‎ ‎∴AC=3x=14,‎ ‎∴⊙O的半径为7.‎ ‎【点评】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.‎ ‎23.(10分)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50.‎ ‎(1)当31≤x≤50时,y与x的关系式为  ;‎ ‎(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?‎ ‎(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.‎ ‎【分析】本题是通过构建函数模型解答销售利润的问题.‎ ‎(1)依据题意利用待定系数法,易得出当31≤x≤50时,y与x的关系式为:y=x+55,‎ ‎(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.‎ ‎(3)要使第31天到第35天的日销售利润W(元)随x的增大而增大,则对称轴=≥35,求得a即可 ‎【解答】解:‎ ‎(1)依题意,当x=36时,y=37;x=44时,y=33,‎ 当31≤x≤50时,设y=kx+b,‎ 则有,解得 ‎∴y与x的关系式为:y=x+55‎ ‎(2)依题意,‎ ‎∵W=(y﹣18)•m ‎∴‎ 整理得,‎ 当1≤x≤30时,‎ ‎∵W随x增大而增大 ‎∴x=30时,取最大值W=30×110+1100=4400‎ 当31≤x≤50时,‎ W=x2+160x+1850=‎ ‎∵<0‎ ‎∴x=32时,W取得最大值,此时W=4410‎ 综上所述,x为32时,当天的销售利润W(元)最大,最大利润为4410元 ‎(3)依题意,‎ W=(y+a﹣18)•m=‎ ‎∵第31天到第35天的日销售利润W(元)随x的增大而增大 ‎∴对称轴x==≥35,得a≥3‎ 故a的最小值为3.‎ ‎【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).‎ ‎24.(10分)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.‎ ‎(1)填空:∠CDE=  (用含α的代数式表示);‎ ‎(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;‎ ‎(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.‎ ‎【分析】(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;‎ ‎(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF=,即可求解;‎ ‎(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解.‎ ‎【解答】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE ‎∴△ACD≌△BCE,∠DCE=α ‎∴CD=CE ‎∴∠CDE=‎ 故答案为:‎ ‎(2)AE=BE+CF 理由如下:如图,‎ ‎∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE ‎∴△ACD≌△BCE ‎∴AD=BE,CD=CE,∠DCE=60°‎ ‎∴△CDE是等边三角形,且CF⊥DE ‎∴DF=EF=‎ ‎∵AE=AD+DF+EF ‎∴AE=BE+CF ‎(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,‎ ‎∵∠ACB=90°,AC=BC=5,‎ ‎∴∠CAB=∠ABC=45°,AB=10‎ ‎∵∠ACB=90°=∠AGB ‎∴点C,点G,点B,点A四点共圆 ‎∴∠AGC=∠ABC=45°,且CE⊥AG ‎∴∠AGC=∠ECG=45°‎ ‎∴CE=GE ‎∵AB=10,GB=6,∠AGB=90°‎ ‎∴AG==8‎ ‎∵AC2=AE2+CE2,‎ ‎∴(5)2=(8﹣CE)2+CE2,‎ ‎∴CE=7(不合题意舍去),CE=1‎ 若点G在AB的下方,过点C作CF⊥AG,‎ 同理可得:CF=7‎ ‎∴点C到AG的距离为1或7.‎ ‎【点评】本题是几何变换综合题,考查了全等三角形的性质,旋转的性质,等边三角形的性质,勾股定理,利用勾股定理列出方程是本题的关键.‎ ‎25.(12分)已知抛物线y=a(x﹣2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点为D.‎ ‎(1)求抛物线的解析式,并写出D点的坐标;‎ ‎(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由;‎ ‎(3)若点P在抛物线上,且=m,试确定满足条件的点P的个数.‎ ‎【分析】(1)利用待定系数法,转化为解方程组即可解决问题.‎ ‎(2)可能.分三种情形①当DE=DF时,②当DE=EF时,③当DF=EF时,分别求解即可.‎ ‎(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],构建二次函数求出△PBD的面积的最大值,再根据对称性即可解决问题.‎ ‎【解答】解:(1)由题意:,‎ 解得,‎ ‎∴抛物线的解析式为y=﹣(x﹣2)2+3,‎ ‎∴顶点D坐标(2,3).‎ ‎(2)可能.如图1,‎ ‎∵A(﹣2,0),D(2,3),B(6,0),‎ ‎∴AB=8,AD=BD=5,‎ ‎①当DE=DF时,∠DFE=∠DEF=∠ABD,‎ ‎∴EF∥AB,此时E与B重合,与条件矛盾,不成立.‎ ‎②当DE=EF时,‎ 又∵△BEF∽△AED,‎ ‎∴△BEF≌△AED,‎ ‎∴BE=AD=5‎ ‎③当DF=EF时,∠EDF=∠DEF=∠DAB=∠DBA,‎ ‎△FDE∽△DAB,‎ ‎∴=,‎ ‎∴==,‎ ‎∵△AEF∽△BCE ‎∴==,‎ ‎∴EB=AD=,‎ 答:当BE的长为5或时,△CFE为等腰三角形.‎ ‎(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设P[n,﹣(n﹣2)2+3],‎ 则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣(n﹣4)2+,‎ ‎∵﹣<0,‎ ‎∴n=4时,△PBD的面积的最大值为,‎ ‎∵=m,‎ ‎∴当点P在BD的右侧时,m的最大值==,‎ 观察图象可知:当0<m<时,满足条件的点P的个数有4个,‎ 当m=时,满足条件的点P的个数有3个,‎ 当m>时,满足条件的点P的个数有2个(此时点P在BD的左侧).‎ ‎【点评】本题属于二次函数综合题,考查了待定系数法,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建二次函数解决最值问题,学会用转化的思想思考问题,属于中考压轴题.‎ 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/7/1 7:44:18;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557‎