- 504.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016年浙江省金华市中考数学试卷
一、选择题(本题有10小题,每小题3分,共30分)
1.(3分)(2016•金华)实数﹣的绝对值是( )
A.2 B. C.﹣ D.﹣
2.(3分)(2016•金华)若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )
A.a<0 B.ab<0 C.a<b D.a,b互为倒数
3.(3分)(2016•金华)如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是( )
A.Φ45.02 B.Φ44.9 C.Φ44.98 D.Φ45.01
4.(3分)(2016•金华)从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )
A. B. C. D.
5.(3分)(2016•金华)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是( )
A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=2
6.(3分)(2016•金华)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )
A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD
7.(3分)(2016•金华)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )
A. B. C. D.
8.(3分)(2016•金华)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要( )
A.米2 B.米2 C.(4+)米2 D.(4+4tanθ)米2
9.(3分)(2016•金华)足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在( )
A.点C B.点D或点E
C.线段DE(异于端点) 上一点 D.线段CD(异于端点) 上一点
10.(3分)(2016•金华)在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为( )
A. B. C. D.
二、填空题(本题有6小题,每小题4分,共24分)
11.(4分)(2016•金华)不等式3x+1<﹣2的解集是 .
12.(4分)(2016•金华)能够说明“=x不成立”的x的值是 (写出一个即可).
13.(4分)(2016•金华)为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是 mg/L.
14.(4分)(2016•金华)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是 .
15.(4分)(2016•金华)如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是 .
16.(4分)(2016•金华)由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)
(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是 米.
(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是 米.
三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)
17.(6分)(2016•金华)计算:﹣(﹣1)2016﹣3tan60°+(﹣2016)0.
18.(6分)(2016•金华)解方程组.
19.(6分)(2016•金华)某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:
(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.
(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.
20.(8分)(2016•金华)如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.
(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).
北京时间
7:30
2:50
首尔时间
12:15
(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?
21.(8分)(2016•金华)如图,直线y=x﹣与x,y轴分别交于点A,B,与反比例函数y=(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.
(1)求点A的坐标.
(2)若AE=AC.
①求k的值.
②试判断点E与点D是否关于原点O成中心对称?并说明理由.
22.(10分)(2016•金华)四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.
(1)利用图1,求证:四边形ABCD是菱形.
(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.
①连结OE,求△OBE的面积.
②求弧AE的长.
23.(10分)(2016•金华)在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.
(1)已知a=1,点B的纵坐标为2.
①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.
②如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.
(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.
24.(12分)(2016•金华)在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.
(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.
(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.
(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由
2016年浙江省金华市中考数学试卷
参考答案与试题解析
一、选择题(本题有10小题,每小题3分,共30分)
1.(3分)(2016•金华)实数﹣的绝对值是( )
A.2 B. C.﹣ D.﹣
【解答】解:﹣的绝对值是.
故选:B.
2.(3分)(2016•金华)若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )
A.a<0 B.ab<0 C.a<b D.a,b互为倒数
【解答】解:A、a<0,故A正确;
B、ab<0,故B正确;
C、a<b,故C正确;
D、乘积为1的两个数互为倒数,故D错误;
故选:D.
3.(3分)(2016•金华)如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是( )
A.Φ45.02 B.Φ44.9 C.Φ44.98 D.Φ45.01
【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,
∴零件的直径的合格范围是:44.96≤零件的直径≤5.03.
∵44.9不在该范围之内,
∴不合格的是B.
故选:B.
4.(3分)(2016•金华)从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )
A. B. C. D.
【解答】解:如图所示:∵从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,
∴该几何体的左视图为:.
故选:C.
5.(3分)(2016•金华)一元二次方程x2﹣3x﹣2=0的两根为x1,x2,则下列结论正确的是( )
A.x1=﹣1,x2=2 B.x1=1,x2=﹣2 C.x1+x2=3 D.x1x2=2
【解答】解:∵方程x2﹣3x﹣2=0的两根为x1,x2,
∴x1+x2=﹣=3,x1•x2==﹣2,
∴C选项正确.
故选C.
6.(3分)(2016•金华)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )
A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD
【解答】解:由题意,得∠ABC=∠BAD,AB=BA,
A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;
B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;
C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;
D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;
故选:A.
7.(3分)(2016•金华)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )
A. B. C. D.
【解答】解:解:可能出现的结果
小明
打扫社区卫生
打扫社区卫生
参加社会调查
参加社会调查
小华
打扫社区卫生
参加社会调查
参加社会调查
打扫社区卫生
由上表可知,可能的结果共有4种,且他们都是等可能的,其中两人同时选择“参加社会调查”的结果有1种,
则所求概率P1=,
故选:A.
8.(3分)(2016•金华)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要( )
A.米2 B.米2 C.(4+)米2 D.(4+4tanθ)米2
【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),
∴AC+BC=4+4tanθ(米),
∴地毯的面积至少需要1×(4+4tanθ)=4+tanθ(米2);
故选:D.
9.(3分)(2016•金华)足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在( )
A.点C B.点D或点E
C.线段DE(异于端点) 上一点 D.线段CD(异于端点) 上一点
【解答】解:连接BC,AC,BD,AD,AE,BE,
通过测量可知∠ACB<∠ADB<∠AEB,所以射门的点越靠近线段DE,角越大,故最好选择DE(异于端点) 上一点,
故选C.
10.(3分)(2016•金华)在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为( )
A. B. C. D.
【解答】解:∵DH垂直平分AC,
∴DA=DC,AH=HC=2,
∴∠DAC=∠DCH,
∵CD∥AB,
∴∠DCA=∠BAC,
∴∠DAN=∠BAC,∵∠DHA=∠B=90°,
∴△DAH∽△CAB,
∴=,
∴=,
∴y=,
∵AB<AC,
∴x<4,
∴图象是D.
故选D.
二、填空题(本题有6小题,每小题4分,共24分)
11.(4分)(2016•金华)不等式3x+1<﹣2的解集是 x<﹣1 .
【解答】解:解不等式3x+1<﹣2,得3x<﹣3,解得x<﹣1.
12.(4分)(2016•金华)能够说明“=x不成立”的x的值是 ﹣1 (写出一个即可).
【解答】解:能够说明“=x不成立”的x的值是﹣1,
故答案为:﹣1
13.(4分)(2016•金华)为监测某河道水质,进行了6次水质检测,绘制了如图的氨氮含量的折线统计图.若这6次水质检测氨氮含量平均数为1.5mg/L,则第3次检测得到的氨氮含量是 1 mg/L.
【解答】解:由题意可得,
第3次检测得到的氨氮含量是:1.5×6﹣(1.6+2+1.5+1.4+1.5)=9﹣8=1mg/L,
故答案为:1.
14.(4分)(2016•金华)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是 80° .
【解答】解:延长DE交AB于F,
∵AB∥CD,BC∥DE,
∴∠AFE=∠B,∠B+∠C=180°,
∴∠AFE=∠B=60°,
∴∠AED=∠A+∠AFE=80°,
故答案为:80°.
15.(4分)(2016•金华)如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是 2或5 .
【解答】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,
∴AB=10,
∵以AD为折痕△ABD折叠得到△AB′D,
∴BD=DB′,AB′=AB=10.
如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.
设BD=DB′=x,则AF=6+x,FB′=8﹣x.
在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8﹣x)2=102.
解得:x1=2,x2=0(舍去).
∴BD=2.
如图2所示:当∠B′ED=90°时,C与点E重合.
∵AB′=10,AC=6,
∴B′E=4.
设BD=DB′=x,则CD=8﹣x.
在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8﹣x)2+42.
解得:x=5.
∴BD=5.
综上所述,BD的长为2或5.
故答案为:2或5.
16.(4分)(2016•金华)由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)
(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是 米.
(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是 3 米.
【解答】解:(1)如图1中,∵FB=DF,FA=FE,
∴∠FAE=∠FEA,∠B=∠D,
∴∠FAE=∠B,
∴AE∥BD,
∴=,
∴=,
∴AE=,
故答案为.
(2)如图中,作BN⊥FA于N,延长AB、DC交于点M,连接BD、AD、BF、CF.
在RT△BFN中,∵∠BNF=90°,BN=,FN=AN+AF=+2=,
∴BF==,同理得到AC=DF=,
∵∠ABC=∠BCD=120°,
∴∠MBC=∠MCB=60°,
∴∠M=60°,
∴CM=BC=BM,
∵∠M+∠MAF=180°,
∴AF∥DM,∵AF=CM,
∴四边形AMCF是平行四边形,
∴CF=AM=3,
∵∠BCD=∠CBD+∠CDB=60°,∠CBD=∠CDB,
∴∠CBD=∠CDB=30°,∵∠M=60°,
∴∠MBD=90°,
∴BD==2,同理BE=2,
∵<3<2,
∴用三根钢条连接顶点使该钢架不能活动,
∴连接AC、BF、DF即可,
∴所用三根钢条总长度的最小值3,
故答案为3.
三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)
17.(6分)(2016•金华)计算:﹣(﹣1)2016﹣3tan60°+(﹣2016)0.
【解答】解:原式=3﹣1﹣3×+1=0.
18.(6分)(2016•金华)解方程组.
【解答】解:,
由①﹣②,得y=3,
把y=3代入②,得x+3=2,
解得:x=﹣1.
则原方程组的解是.
19.(6分)(2016•金华)某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:
(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.
(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.
【解答】解:(1)∵抽取的人数为21+7+2=30,
∴训练后“A”等次的人数为30﹣2﹣8=20.
补全统计图如图:
(2)600×=400(人).
答:估计该校九年级训练后成绩为“A”等次的人数是400.
20.(8分)(2016•金华)如图1表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.
(1)设北京时间为x(时),首尔时间为y(时),就0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间).
北京时间
7:30
11:15
2:50
首尔时间
8:30
12:15
3:50
(2)如图2表示同一时刻的英国伦敦时间(夏时制)和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?
【解答】解:(1)从图1看出,同一时刻,首尔时间比北京时间多1小时,
故y关于x的函数表达式是y=x+1.
北京时间
7:30
11:15
2:50
首尔时间
8:30
12:15
3:50
(2)从图2看出,设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,
由第(1)题,韩国首尔时间为(t+8)时,
所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.
21.(8分)(2016•金华)如图,直线y=x﹣与x,y轴分别交于点A,B,与反比例函数y=(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.
(1)求点A的坐标.
(2)若AE=AC.
①求k的值.
②试判断点E与点D是否关于原点O成中心对称?并说明理由.
【解答】解:(1)当y=0时,得0=x﹣,解得:x=3.
∴点A的坐标为(3,0).:
(2)①过点C作CF⊥x轴于点F,如图所示.
设AE=AC=t,点E的坐标是(3,t),
在Rt△AOB中,tan∠OAB==,
∴∠OAB=30°.
在Rt△ACF中,∠CAF=30°,
∴CF=t,AF=AC•cos30°=t,
∴点C的坐标是(3+t,t).
∴(3+t)×t=3t,
解得:t1=0(舍去),t2=2.
∴k=3t=6.
②点E与点D关于原点O成中心对称,理由如下:
设点D的坐标是(x,x﹣),
∴x(x﹣)=6,解得:x1=6,x2=﹣3,
∴点D的坐标是(﹣3,﹣2).
又∵点E的坐标为(3,2),
∴点E与点D关于原点O成中心对称.
22.(10分)(2016•金华)四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.
(1)利用图1,求证:四边形ABCD是菱形.
(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.
①连结OE,求△OBE的面积.
②求弧AE的长.
【解答】解:(1)∵AE=EC,BE=ED,
∴四边形ABCD是平行四边形.
∵AB为直径,且过点E,
∴∠AEB=90°,即AC⊥BD.
∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
(2)①连结OF.
∵CD的延长线与半圆相切于点F,
∴OF⊥CF.
∵FC∥AB,
∴OF即为△ABD中AB边上的高.
∴S△ABD=AB×OF=×8×4=16,
∵点O是AB中点,点E是BD的中点,
∴S△OBE=S△ABD=4.
②过点D作DH⊥AB于点H.
∵AB∥CD,OF⊥CF,
∴FO⊥AB,
∴∠F=∠FOB=∠DHO=90°.
∴四边形OHDF为矩形,即DH=OF=4.
∵在Rt△DAH中,sin∠DAB==,
∴∠DAH=30°.
∵点O,E分别为AB,BD中点,
∴OE∥AD,
∴∠EOB=∠DAH=30°.
∴∠AOE=180°﹣∠EOB=150°.
∴弧AE的长==.
23.(10分)(2016•金华)在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.
(1)已知a=1,点B的纵坐标为2.
①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.
②如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.
(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.
【解答】解:(1)①二次函数y=x2,当y=2时,2=x2,
解得x1=,x2=﹣,
∴AB=2.
∵平移得到的抛物线L1经过点B,
∴BC=AB=2,
∴AC=4.
②作抛物线L2的对称轴与AD相交于点N,如图2,
根据抛物线的轴对称性,得BN=DB=,
∴OM=.
设抛物线L2的函数表达式为y=a(x﹣)2,
由①得,B点的坐标为(,2),
∴2=a(﹣)2,
解得a=4.
抛物线L2的函数表达式为y=4(x﹣)2;
(2)如图3,抛物线L3与x轴交于点G,其对称轴与x轴交于点Q,
过点B作BK⊥x轴于点K,
设OK=t,则AB=BD=2t,点B的坐标为(t,at2),
根据抛物线的轴对称性,得OQ=2t,OG=2OQ=4t.
设抛物线L3的函数表达式为y=a3x(x﹣4t),
∵该抛物线过点B(t,at2),
∴at2=a3t(t﹣4t),
∵t≠0,
∴=﹣,
由题意得,点P的坐标为(2t,﹣4a3t2),
则﹣4a3t2=ax2,
解得,x1=﹣t,x2=t,
EF=t,
∴=.
24.(12分)(2016•金华)在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.
(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.
(2)若α为锐角,tanα=,当AE取得最小值时,求正方形OEFG的面积.
(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为:1?若能,求点P的坐标;若不能,试说明理由
【解答】解:(1)如图1,
过点E作EH⊥OA于点H,EF与y轴的交点为M.
∵OE=OA,α=60°,
∴△AEO为正三角形,
∴OH=3,EH==3.
∴E(﹣3,3).
∵∠AOM=90°,
∴∠EOM=30°.
在Rt△EOM中,
∵cos∠EOM=,
即=,
∴OM=4.
∴M(0,4).
设直线EF的函数表达式为y=kx+4,
∵该直线过点E(﹣3,3),
∴﹣3k+4=3,
解得k=,
所以,直线EF的函数表达式为y=x+4.
(2)如图2,
射线OQ与OA的夹角为α( α为锐角,tanα).
无论正方形边长为多少,绕点O旋转角α后得到正方
形OEFG的顶点E在射线OQ上,
∴当AE⊥OQ时,线段AE的长最小.
在Rt△AOE中,设AE=a,则OE=2a,
∴a2+(2a)2=62,解得a1=,a2=﹣(舍去),
∴OE=2a=,∴S正方形OEFG=OE2=.
(3)设正方形边长为m.
当点F落在y轴正半轴时.
如图3,
当P与F重合时,△PEO是等腰直角三角形,有=或=.
在Rt△AOP中,∠APO=45°,OP=OA=6,
∴点P1的坐标为(0,6).
在图3的基础上,
当减小正方形边长时,
点P在边FG 上,△OEP的其中两边之比不可能为:1;
当增加正方形边长时,存在=(图4)和=(图5)两种情况.
如图4,
△EFP是等腰直角三角形,
有=,
即=,
此时有AP∥OF.
在Rt△AOE中,∠AOE=45°,
∴OE=OA=6,
∴PE=OE=12,PA=PE+AE=18,
∴点P2的坐标为(﹣6,18).
如图5,
过P作PR⊥x轴于点R,延长PG交x轴于点H.设PF=n.
在Rt△POG中,PO2=PG2+OG2=m2+(m+n)2=2m2+2mn+n2,
在Rt△PEF中,PE2=PF2+EF2=m2+n2,
当=时,
∴PO2=2PE2.
∴2m2+2mn+n2=2(m2+n2),得n=2m.
∵EO∥PH,
∴△AOE∽△AHP,
∴=,
∴AH=4OA=24,
即OH=18,
∴m=9.
在等腰Rt△PRH中,PR=HR=PH=36,
∴OR=RH﹣OH=18,
∴点P3的坐标为(﹣18,36).
当点F落在y轴负半轴时,
如图6,
P与A重合时,在Rt△POG中,OP=OG,
又∵正方形OGFE中,OG=OE,
∴OP=OE.
∴点P4的坐标为(﹣6,0).
在图6的基础上,当正方形边长减小时,△OEP的其中
两边之比不可能为:1;当正方形边长增加时,存在=(图7)这一种情况.
如图7,过P作PR⊥x轴于点R,
设PG=n.
在Rt△OPG中,PO2=PG2+OG2=n2+m2,
在Rt△PEF中,PE2=PF2+FE2=(m+n )2+m2=2m2+2mn+n2.
当=时,
∴PE2=2PO2.
∴2m2+2mn+n2=2n2+2m2,
∴n=2m,
由于NG=OG=m,则PN=NG=m,
∵OE∥PN,∴△AOE∽△ANP,∴=1,
即AN=OA=6.
在等腰Rt△ONG中,ON=m,
∴12=m,
∴m=6,
在等腰Rt△PRN中,RN=PR=6,
∴点P5的坐标为(﹣18,6).
所以,△OEP的其中两边的比能为:1,点P的坐标是:P1(0,6),P2(﹣6,18),
P3(﹣18,36),P4(﹣6,0),P5(﹣18,6).
参与本试卷答题和审题的老师有:2300680618;梁宝华;sd2011;曹先生;wdzyzmsy@126.com;wd1899;弯弯的小河;hbxglhl;cook2360;sks;zgm666;王学峰;三界无我;1286697702;星月相随(排名不分先后)
菁优网
2016年6月19日