• 818.77 KB
  • 2021-05-10 发布

中考数学压轴题重叠面积问题

  • 22页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
例1: 在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米 ‎(1)当t=4时,求S的值 ‎(2)当,求S与t的函数关系式,并求出S的最大值 ‎ ‎ ‎25.(1)t=4时,Q与B重合,P与D重合,‎ 重合部分是=‎ ‎ leizi 例2:如图,直线与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.‎ ‎(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;‎ ‎(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?‎ ‎(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为,正方形OCMD与△AOB重叠部分的面积为S.试求S与的函数关系式并画出该函B x y M C D O A B x y O A B x y O A 数的图象.‎ 解:(1)设点M的横坐标为x,则点M的纵坐标为-x+4(00,-x+4>0);‎ ‎ 则:MC=∣-x+4∣=-x+4,MD=∣x∣=x;‎ ‎ ∴C四边形OCMD=2(MC+MD)=2(-x+4+x)=8‎ ‎∴当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8;‎ ‎(2)根据题意得:S四边形OCMD=MC·MD=(-x+4)· x=-x2+4x=-(x-2)2+4‎ ‎∴四边形OCMD的面积是关于点M的横坐标x(02,∴当t=时,S最大= ………………12分 例4: 已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;‎ ‎(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;‎ ‎(2)当纸片重叠部分的图形是四边形时,求t的取值范围;‎ ‎(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由。‎ 解:(1) ∵A,B两点的坐标分别是A(10,0)和B(8,),‎ ‎ ∴,‎ ‎ ∴‎ ‎ 当点A´在线段AB上时,∵,TA=TA´,‎ ‎ ∴△A´TA是等边三角形,且,‎ ‎ ∴,,‎ ‎ leizi A´‎ y E ‎ ∴,‎ x O C T P B A ‎ 当A´与B重合时,AT=AB=,‎ ‎ 所以此时。‎ ‎ (2)当点A´在线段AB的延长线,且点P在线段AB(不与B重合)上时,‎ ‎ 纸片重叠部分的图形是四边形(如图(1),其中E是TA´与CB的交点),‎ A´‎ y x ‎ 当点P与B重合时,AT=2AB=8,点T的坐标是(2,0)‎ ‎ 又由(1)中求得当A´与B重合时,T的坐标是(6,0)‎ P B E ‎ 所以当纸片重叠部分的图形是四边形时,。‎ F C ‎ (3)S存在最大值 A T O ‎ 当时,,‎ ‎ 在对称轴t=10的左边,S的值随着t的增大而减小,‎ ‎∴当t=6时,S的值最大是。‎ 当时,由图,重叠部分的面积 ‎∵△A´EB的高是,‎ ‎∴‎ ‎ ‎ 当t=2时,S的值最大是;‎ 当,即当点A´和点P都在线段AB的延长线是(如图,其中E是TA´与CB的交点,F是TP与CB的交点),‎ ‎∵,四边形ETAB是等腰形,∴EF=ET=AB=4,‎ ‎ leizi ‎∴‎ 综上所述,S的最大值是,此时t的值是。‎ 例6:如图,已知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为.‎ ‎(1)请直接写出点的坐标; ‎ ‎(2)求抛物线的解析式;‎ ‎(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;‎ ‎(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积.‎ 备用图 ‎(14分)(1);…………………………………………………2分 ‎ (2)设抛物线为,抛物线过,‎ ‎ leizi ‎ 解得…………………………………………………2分 ‎∴.……………………………………………………………1分 ‎(3)①当点A运动到点F时,‎ 当时,如图1,‎ 图1‎ ‎ ∵, ‎ ‎∴∴‎ ‎∴;……2分 ‎ ②当点运动到轴上时,,‎ 图2‎ 当时,如图2, ‎ ‎∴∴,‎ ‎∵,‎ ‎∴‎ ‎ ‎ ‎ leizi ‎;…………(2分)‎ ‎ ‎ ‎③当点运动到轴上时,,‎ 当时,如图3,‎ 图3‎ ‎∵,‎ ‎∴,‎ ‎∵,‎ ‎∽‎ ‎∴,‎ ‎∴,‎ ‎∴ ‎ ‎ =.……(2分)‎ ‎(解法不同的按踩分点给分)‎ ‎(4)∵,,‎ ‎∴ ………………………………………………(2分)‎ ‎ =‎ ‎ =.……………………………………………………………(1分)‎ ‎ leizi 图4‎ 例7:如图,已知直线与直线相交于点分别交轴 于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.‎ ‎ (1)求的面积;‎ ‎(2)求矩形的边与的长;‎ ‎(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围.‎ ‎(1)解:由得点坐标为 由得点坐标为 ‎ leizi ‎∴ (2分)‎ 由解得∴点的坐标为 (3分)‎ ‎∴ (4分)‎ ‎ (2)解:∵点在上且 ‎ ∴点坐标为 (5分)‎ 又∵点在上且 ‎∴点坐标为 全 (6分)‎ ‎∴ (7分)‎ ‎ (3)解法一:当时,如图1,矩形与重叠部分为五边形(时,为四边形).过作于,则 A D B E O R F x y y M ‎(图3)‎ G C A D B E O C F x y y G ‎(图1)‎ R M A D B E O C F x y y G ‎(图2)‎ R M ‎∴即∴‎ ‎∴‎ ‎ leizi 即 (10分)‎ ‎(2013•玉林压轴题)如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).‎ ‎(1)求点B,C的坐标;‎ ‎(2)判断△CDB的形状并说明理由;‎ ‎(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.‎ 解答:‎ 解:(1)∵点A(﹣1,0)在抛物线y=﹣(x﹣1)2+c上,‎ ‎∴0=﹣(﹣1﹣1)2+c,得c=4,‎ ‎∴抛物线解析式为:y=﹣(x﹣1)2+4,‎ 令x=0,得y=3,∴C(0,3);‎ 令y=0,得x=﹣1或x=3,∴B(3,0).‎ ‎(2)△CDB为直角三角形.理由如下:‎ 由抛物线解析式,得顶点D的坐标为(1,4).‎ 如答图1所示,过点D作DM⊥x轴于点M,则OM=1,DM=4,BM=OB﹣OM=2.‎ 过点C作CN⊥DM于点N,则CN=1,DN=DM﹣MN=DM﹣OC=1.‎ 在Rt△OBC中,由勾股定理得:BC===;‎ ‎ leizi 在Rt△CND中,由勾股定理得:CD===;‎ 在Rt△BMD中,由勾股定理得:BD===.‎ ‎∵BC2+CD2=BD2,‎ ‎∴△CDB为直角三角形(勾股定理的逆定理).‎ ‎(3)设直线BC的解析式为y=kx+b,∵B(3,0),C(0,3),‎ ‎∴,‎ 解得k=﹣1,b=3,‎ ‎∴y=﹣x+3,‎ 直线QE是直线BC向右平移t个单位得到,‎ ‎∴直线QE的解析式为:y=﹣(x﹣t)+3=﹣x+3+t;‎ 设直线BD的解析式为y=mx+m,∵B(3,0),D(1,4),‎ ‎∴,‎ 解得:m=﹣2,n=6,‎ ‎∴y=﹣2x+6.‎ 连接CQ并延长,射线CQ交BD于点G,则G(,3).‎ 在△COB向右平移的过程中:‎ ‎(I)当0<t≤时,如答图2所示:‎ 设PQ与BC交于点K,可得QK=CQ=t,PB=PK=3﹣t.‎ 设QE与BD的交点为F,则:,解得,∴F(3﹣t,2t).‎ S=S△QPE﹣S△PBK﹣S△FBE=PE•PQ﹣PB•PK﹣BE•yF=×3×3﹣(3﹣t)2﹣t•2t=t2+3t;‎ ‎ leizi ‎(II)当<t<3时,如答图3所示:‎ 设PQ分别与BC、BD交于点K、点J.‎ ‎∵CQ=t,‎ ‎∴KQ=t,PK=PB=3﹣t.‎ 直线BD解析式为y=﹣2x+6,令x=t,得y=6﹣2t,‎ ‎∴J(t,6﹣2t).‎ S=S△PBJ﹣S△PBK=PB•PJ﹣PB•PK=(3﹣t)(6﹣2t)﹣(3﹣t)2=t2﹣3t+.‎ 综上所述,S与t的函数关系式为:‎ S=.‎ ‎ leizi ‎(2013•鄂州压轴题)在平面直角坐标系中,已知M1(3,2),N1(5,﹣1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).‎ ‎(1)若M(﹣2,5),请直接写出N点坐标.‎ ‎(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.‎ ‎(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:,求m的值.‎ ‎(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时BP的长度.‎ 解答:‎ 解:(1)由于图形平移过程中,对应点的平移规律相同,‎ 由点M到点M′可知,点的横坐标减5,纵坐标加3,‎ 故点N′的坐标为(5﹣5,﹣1+3),即(0,2).‎ N(0,2);‎ ‎(2)∵N(0,2)在抛物线y=x2+x+k上 ‎ leizi ‎∴k=2‎ ‎∴抛物线的解析式为y=x2+x+2 ‎ ‎(3)∵y=x2+x+2=(x+2)2‎ ‎∴B(﹣2,0)、A(0,2)、E(﹣,1)‎ ‎∵CO:OF=2:‎ ‎∴CO=﹣m,FO=﹣m,BF=2+m ‎∵S△BEC=S△EBF+S△BFC=‎ ‎∴(2+m)(﹣m+1)=‎ 整理得:m2+m=0‎ ‎∴m=﹣1或0 ‎ ‎∵m<0‎ ‎∴m=﹣1 ‎ ‎(4)在Rt△ABO中,tan∠ABO===‎ ‎∴∠ABO=30°,AB=2AO=4‎ ‎①当∠BPE>∠APE时,连接A1B则对折后如图2,A1为对折后A的所落点,△EHP是重叠部分.‎ ‎∵E为AB中点,∴S△AEP=S△BEP=S△ABP ‎∵S△EHP=S△ABP ‎∴=S△EHP=S△BHP=S△ABP ‎∴A1H=HP,EH=HB=1‎ ‎∴四边形A1BPE为平行四边形 ‎ leizi ‎∴BP=A1E=AE=2‎ 即BP=2 ‎ ‎②当∠BPE=∠APE时,重叠部分面积为△ABP面积的一半,不符合题意;‎ ‎③当∠BPE<∠APE时.‎ 则对折后如图3,A1为对折后A的所落点.△EHP是重叠部分 ‎∵E为AB中点,‎ ‎∴S△AEP=S△BEP=S△ABP ‎∵S△EHP=S△ABP∴S△EBH=S△EHP==S△ABP ‎∴BH=HP,EH=HA1=1‎ 又∵BE=EA=2‎ ‎∴EHAP,‎ ‎∴AP=2‎ 在△APB中,∠ABP=30°,AB=4,AP=2.[来源:学。科。网Z。X。X。K]‎ ‎∴∠APB=90°,‎ ‎∴BP=,‎ 综合①②③知:BP=2或;‎ ‎(2013浙江丽水12分)如图1,点A是轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作轴的垂线,垂足为F,过点B作轴的垂线与直线CF相交于点E,点D点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为 ‎(1)当时,求CF的长;‎ ‎(2)①当为何值时,点C落在线段BD上?‎ ‎②设△BCE的面积为S,求S与之间的函数关系式;‎ ‎(3)如图2,当点C与点E重合时,△CDF沿轴左右平移得到△C’D’‎ ‎ leizi ‎ F’,再将A,B,C’,D’为顶点的四边形沿C’F’剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形,请直接写出所有符合上述条件的点C’的坐标。‎ ‎(2013浙江丽水12分)如图1,点A是轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作轴的垂线,垂足为F,过点B作轴的垂线与直线CF相交于点E,点D点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为 ‎(1)当时,求CF的长;‎ ‎(2)①当为何值时,点C落在线段BD上?‎ ‎②设△BCE的面积为S,求S与之间的函数关系式;‎ ‎(3)如图2,当点C与点E重合时,△CDF沿轴左右平移得到△C’D’ F’,再将A,B,C’,D’为顶点的四边形沿C’F’剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形,请直接写出所有符合上述条件的点C’的坐标。‎ 解:(1)当时,OA=2,‎ ‎ ∵点B,∴OB=4.‎ ‎ 又∵,AB=2AC,可证RT∆ABO∽RT∆CAF.‎ ‎ leizi ‎ ∴,即.‎ ‎ (2)①当时,∵RT∆ABO∽RT∆CAF,‎ ‎ ∴,AF=2,‎ ‎ ∴FD=2,.‎ ‎ ∵点C落在线段BD上,∴RT∆CFD∽RT∆BOD,‎ ‎ ∴,整理得,‎ ‎ 解得:,(舍去).‎ ‎ ∴当时,点C落在线段BD上.‎ ‎ ②当点C与点E重合时,CF=4,可得.‎ ‎ 当时,;‎ ‎ 当时,.‎ ‎ (3)点的坐标为:,,.‎ ‎ 理由如下:‎ ‎ ①如图1,当时,点的坐标为,‎ ‎ 根据≌,为拼成的三角形,此时的坐标为;‎ 图1‎ ‎ ‎ ‎ ②如图2,当点与点A重合时,点的坐标为,‎ ‎ leizi ‎ 根据≌,为拼成的三角形,此时的坐标为;‎ 图2‎ ‎ ‎ ‎ ③如图3,当时,点的坐标为,‎ ‎ 根据≌,为拼成的三角形,此时的坐标为;‎ 图3‎ ‎ ‎ ‎ leizi ‎ leizi ‎ leizi