- 564.19 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017年浙江中考真题分类汇编(数学):专题11 圆
一、单选题
1、(2017·金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为( )
A、10cm
B、16cm
C、24cm
D、26cm
2、(2017•宁波)如图,在Rt△ABC中,∠A=90°,BC= .以BC的中点O为圆心的圆分别与AB、AC相切于D、E两点,则 的长为 ( )
A、
B、
C、
D、
3、(2017·丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是( )
A、
B、
C、
D、
4、(2017·衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8。则图中阴影部分的面积是( )
A、
B、
C、
D、
二、填空题
5、(2017•杭州)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.
6、(2017•湖州)如图,已知在 中, .以 为直径作半圆 ,交 于点 .若 ,则 的度数是________度.
7、(2017·台州)如图,扇形纸扇完全打开后,外侧两竹条AB,AC的夹角为120°,AB长为30cm,则
弧BC的长为________cm(结果保留 )
8、(2017•绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E.则∠DOE的度数为________.
9、(2017·嘉兴)如图,小明自制一块乒乓球拍,正面是半径为 的 , ,弓形 (阴影部分)粘贴胶皮,则胶皮面积为________.
10、(2017•湖州)如图,已知 ,在射线 上取点 ,以 为圆心的圆与 相切;在射线 上取点 ,以 为圆心, 为半径的圆与 相切;在射线 上取点 ,以 为圆心, 为半径的圆与 相切; ;在射线 上取点 ,以 为圆心, 为半径的圆与 相切.若 的半径为 ,则 的半径长是________.
11、(2017·衢州)如图,在直角坐标系中,⊙A的圆心A的坐标为(-1,0),半径为1,点P为直线 上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是________
三、解答题
12、(2017•湖州)如图, 为 的直角边 上一点,以 为半径的 与斜边 相切于点 ,交 于点 .已知 , .
(1)求 的长;
(2)求图中阴影部分的面积.
13、(2017·台州)如图,已知等腰直角△ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径
(1)求证:△APE是等腰直角三角形;
(2)若⊙O的直径为2,求 的值
14、(2017·衢州)如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D。连结OD,作BE⊥CD于点E,交半圆O于点F。已知CE=12,BE=9
(1)求证:△COD∽△CBE;
(2)求半圆O的半径 的长
15、(2017·丽水)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.
(1)求证:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的长.
16、(2017•温州)如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.
(1)当∠APB=28°时,求∠B和 的度数;
(2)求证:AC=AB.
(3)在点P的运动过程中
①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;
②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.
17、(2017•温州)如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D
(1)求证:四边形CDEF是平行四边形;
(2)若BC=3,tan∠DEF=2,求BG的值.
18、(2017•杭州)如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,
(1)点点同学通过画图和测量得到以下近似数据:
ɑ
30°
40°
50°
60°
β
120°
130°
140°
150°
γ
150°
140°
130°
120°
猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:
(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.
19、(2017•宁波)有两个内角分别是它们对角的一半的四边形叫做半对角四边形.
(1)如图1,在半对角四边形ABCD中,∠B= ∠D,∠C= ∠A,求∠B与∠C的度数之和;
(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.
求证:四边形DBCF是半对角四边形;
(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当DH=BG时,求△BGH与△ABC的面积之比.
20、(2017·金华)(本题10分) 如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D.E是AB延长线上一点,CE交⊙O于点F,连结OC,AC.
(1)求证:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度数.
②若⊙O的半径为2 ,求线段EF的长.
答案解析部分
一、单选题
1、【答案】C
【考点】勾股定理的应用,垂径定理的应用
【解析】【解答】解:∵OB=13cm,CD=8cm;
∴OD=5cm;
在RT△BOD中,
∴BD===12(cm)
∴AB=2BD=24(cm)
【分析】首先先作OC⊥AB交点为D,交圆于点C,根据垂径定理和勾股定理求AB的长。
2、【答案】B
【考点】直角三角形斜边上的中线,勾股定理,正方形的判定,切线的性质,弧长的计算
【解析】【解答】解: ∵O为BC中点.BC=2.
∴OA=OB=OC=.
又∵AC、AB是⊙O的切线,
∴OD=OE=r.OE⊥AC,OD⊥AB,
∵∠A=90°.
∴四边形ODAE为正方形.
∴∠DOE=90°.
∴(2r)2+(2r)2=.
∴r=1.
∴弧DE===.
故答案为B.
【分析】根据O为BC中点.BC=2.求出OA=OB=OC=;再根据AC、AB是⊙O的切线,得出四边形ODAE为正方形;由勾股定理求出r的值,再根据弧长公式得出弧DE的长度.
3、【答案】A
【考点】扇形面积的计算
【解析】【解答】解:连接OC,∵点C是以AB为直径的半圆O的三等分点,
∴∠ABC=30°,∠BOC=120°,
又∵AB为直径,
∴∠ACB=90°,
则AB=2AC=4,BC= ,
则S阴=S扇形BOC-S△BOC= - = - .
故选A.
【分析】连接OC,S阴=S扇形BOC-S△BOC , 则需要求出半圆的半径,及圆心角∠BOC;由点C是以AB为直径的半圆O的三等分点,可得∠ABC=30°,∠BOC=120°,从而可解答.
4、【答案】A
【考点】垂径定理的应用,扇形面积的计算
【解析】【解答】解:作GH⊥AB,交CD于G,交EF于H,连接OC、OD、OE、OF.
∵⊙O的直径AB=10,CD=6,EF=8,且AB‖CD‖EF,
∴OG⊥CD,OH⊥EF,
∴∠COG=∠DOG,∠EOH=∠FOH,
∴OE=OF=OC=OD=5,CG=3,EH=4,
∴OG=4,OH=3,
∵AB‖CD‖EF,
∴S△OCD=S△BCD , S△OEF=S△BEF ,
∴S阴影=S扇形ODC+S扇形OEF=S半圆=π×52=π.
故答案是:π.
【分析】作GH⊥AB,交CD于G,交EF于H,连接OC、OD、OE、OF.由AB‖CD‖EF,可得OG⊥CD,OH⊥EF,∠COG=∠DOG,∠EOH=∠FOH,
S△OCD=S△BCD , S△OEF=S△BEF , 所以S阴影=S扇形ODC+S扇形OEF=S半圆=π×52=π.
二、填空题
5、【答案】50°
【考点】三角形内角和定理,切线的性质
【解析】【解答】解:∵AT切⊙O于点A,AB是⊙O的直径,
∴∠BAT=90°,
∵∠ABT=40°,
∴∠ATB=50°,
故答案为:50°
【分析】根据切线的性质和三角形内角和定理即可求出答案.
6、【答案】140
【考点】等腰三角形的性质,圆周角定理
【解析】【解答】解:连接AD(如图),
∵AB为⊙O的直径,
∴AD⊥BC,
又∵AB=AC,∠BAC=40°,
∴∠BAD=20°,∠B=70°,
∴弧AD度数为140°.
故答案为140.
【分析】连接AD,根据直径所对的圆周角为直角,可知AD⊥BC,然后根据等腰三角形三线合一的性质,可知AD平分∠BAC,可得∠BAD=20°,然后求得∠B=70°,再根据同弧所对的圆周角等于其所对圆心角的一半,从而得出答案.
7、【答案】20
【考点】弧长的计算
【解析】【解答】解:依题可得:弧BC的长===20.
【分析】根据弧长公式即可求得.
8、【答案】90°
【考点】圆心角、弧、弦的关系
【解析】【解答】解:∠DAE与∠DOE在同一个圆中,且所对的弧都是 ,
则∠DOE=2∠DAE=2×45°=90°.
故答案为90°.
【分析】运用圆周角与圆心角的关系即可解答.
9、【答案】(32+48π)cm²
【考点】扇形面积的计算
【解析】【解答】解:连接OA,OB,
因为弧AB的度数是90°,
所以圆心角∠AOB=90°,
则S空白=S扇形AOB-S△AOB==(cm2),
S阴影=S圆-S空白=64-()=32+48(cm2)。
故答案为(32+48π)cm²
【分析】先求出空白部分的面积,再用圆的面积减去空白的面积就是阴影部分的面积.连接OA,OB,则S空白=S扇形AOB-S△AOB , 由弧AB的度数是90°,
可得圆心角∠AOB=90°,即可解答.
10、【答案】512
【考点】含30度角的直角三角形,切线的性质,探索数与式的规律
【解析】【解答】解:如图,连接O1A1,O2A2,O3A3,
∵⊙O1,⊙O2,⊙O3,……都与OB相切,
∴ O1A1⊥OB,
又∵∠AOB=30°,O1A1=r1=1=20.
∴OO1=2,
在Rt△OO2A2中,
∴OO1+O1O2=O2A2.
∴2+O2A2=2O2A2.
∴O2A2=r2=2=21.
∴OO2=4=22,
……
依此类推可得OnAn=rn=2=2n-1.
∴O10A10=r10=2=210-1=29=512.
故答案为512.
【分析】根据圆的切线性质,和Rt三角形中30°角所对的直角边等于斜边的一半;可知OO1=2;同样可知O1O2=2,OO2=2+2=22;……OOn=2n;OnAn=rn=2=2n-1;因此可得第10个⊙O10的半径.
11、【答案】2
【考点】点到直线的距离,勾股定理的应用,解直角三角形
【解析】【解答】解:连接AP,依题可得:要使PQ最小,只要AP最小即可,即AP垂直直线,
设直线与x轴交于C(4,0),与y轴交于B(0,3),
在Rt△COB中,
∵CO=4,BO=3,
∴AB=5,
∴sinA==,
在Rt△CPA中,
∵A(-1,0),
∴AC=5,
∴sinA===
∴PA=3,
在Rt△QPA中,
∵QA=1,PA=3,
∴PQ===2
【分析】要使PQ最小,只要AP最小即可,即AP垂直直线,求出直线与坐标轴的交点坐标,再根据锐角三角函数sinA====, 从而求出PA,再根据勾股定理求出PQ即可。
三、解答题
12、【答案】(1)解:在Rt△ABC中,AB===2 .
∵BC⊥OC
∴BC是⊙O的切线
又∵AB是⊙O的切线
∴BD=BC=
∴AD=AB-BD=
(2)解:在Rt△ABC中,sinA= ==.
∴∠A=30°.
∵AB切⊙O于点D.
∴OD⊥AB.
∴∠AOD=90°-∠A=60°.
∵ =tanA=tan30°.
∴ =.
∴OD=1.
S阴影==.
【考点】勾股定理,切线的性质,扇形面积的计算,解直角三角形
【解析】【分析】(1)在Rt△ABC中,利用勾股定理求出AB的长,然后根据切线的判定证出BC为切线,然后可根据切线长定理可求解.
(2)在Rt△ABC中,根据∠A的正弦求出∠A度数,然后根据切线的性质求出OD的长,和扇形圆心角的度数,再根据扇形的面积公式可求解.
13、【答案】(1)证明:∵△ABC是等腰直角三角形,
∴∠C=∠ABC=45°,
∴∠PEA=∠ABC=45°
又∵PE是⊙O的直径,
∴∠PAE=90°,
∴∠PEA=∠APE=45°,
∴ △APE是等腰直角三角形.
(2)解:∵△ABC是等腰直角三角形,
∴AC=AB,
同理AP=AE,
又∵∠CAB=∠PAE=90°,
∴∠CAP=∠BAE,
∴△CPA≌△BAE,
∴CP=BE,
在Rt△BPE中,∠PBE=90°,PE=2,
∴PB2+BE2=PE2,
∴CP2+PB2=PE2=4.
【考点】全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理,圆心角、弧、弦的关系,等腰直角三角形
【解析】【分析】(1)根据等腰直角三角形性质得出∠C=∠ABC=∠PEA=45°,再由PE是⊙O的直径,得出∠PAE=90°,∠PEA=∠APE=45°,从而得证.
(2)根据题意可知,AC=AB,AP=AE,再证△CPA≌△BAE,得出CP=BE,依勾股定理即可得证.
14、【答案】(1)解:∵CD切半圆于点D,OD为⊙O的半径,
∴CD⊥OD,
∴∠CDO=90°,
∵BE⊥CD于点E,
∴∠E=90°.
∵∠CDO=∠E=90°,∠C=∠C,
∴△COD∽△CBE.
(2)解:∵在Rt△BEC中,CE=12,BE=9,
∴CE=15,
∵△COD∽△CBE,
∴,
即,
∴r=.
【考点】切线的性质,相似三角形的判定与性质
【解析】【分析】(1)根据CD切半圆于点D,BE⊥CD于点E,得出∠CDO=∠E=90°,根据三角形两个角对应相等的两个三角形相似得出△COD∽△CBE.
(2)根据(1)中△COD∽△CBE,得出, 从而求出半径。
15、【答案】(1)证明:连结OD,∵DE是⊙O的切线,
∴∠ODE=90°,
∴∠ADE+∠BDO=90°,
∵∠ACB=90°,
∴∠A+∠B=90°,
又∵OD=OB,
∴∠B=∠BDO,
∴∠ADE=∠A.
(2)解:连结CD,∵∠ADE=∠A,
∴AE=DE,
∵BC是⊙O的直径,∠ACB=90°.
∴EC是⊙O的切线,∴DE=EC,
∴AE=EC.
又∵DE=10,
∴AC=2DE=20,
在Rt△ADC中,DC= .
设BD=x,
在Rt△BDC中,BC2=x2+122, 在Rt△ABC中,BC2=(x+16)2-202,
∴x2+122=(x+16)2-202,解得x=9,
∴BC= .
【考点】切线的性质
【解析】【分析】(1)连结OD,根据切线的性质和同圆的半径相等,及圆周角所对的圆周角为90°,得到相对应的角的关系,即可证明;(2)由(1)中的∠ADE=∠A可得AE=DE;由∠ACB=90°,可得EC是⊙O的切线,由切线长定理易得DE=EC,则AC=2DE,由勾股定理求出CD;设BD=x,再可由勾股定理BC2= x2+122=(x+16)2-202,可解出x的值,再重新代入原方程,即可求出BC.
16、【答案】(1)解:∵MN⊥AB,AM=BM,
∴PA=PB,
∴∠PAB=∠B,
∵∠APB=28°,
∴∠B=76°,
如图1,连接MD,
∵MD为△PAB的中位线,
∴MD∥AP,
∴∠MDB=∠APB=28°,
∴ =2∠MDB=56°;
(2)证明:∵∠BAC=∠MDC=∠APB,
又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,
∴∠BAP=∠ACB,
∵∠BAP=∠B,
∴∠ACB=∠B,
∴AC=AB;
(3)解:①如图2,记MP与圆的另一个交点为R,
∵MD是Rt△MBP的中线,
∴DM=DP,
∴∠DPM=∠DMP=∠RCD,
∴RC=RP,
∵∠ACR=∠AMR=90°,
∴AM2+MR2=AR2=AC2+CR2 ,
∴12+MR2=22+PR2 ,
∴12+(4﹣PR)2=22+PR2 ,
∴PR= ,
∴MR= ,
Ⅰ.当∠ACQ=90°时,AQ为圆的直径,
∴Q与R重合,
∴MQ=MR= ;
Ⅱ.如图3,当∠QCD=90°时,
在Rt△QCP中,PQ=2PR= ,
∴MQ= ;
Ⅲ.如图4,当∠QDC=90°时,
∵BM=1,MP=4,
∴BP= ,
∴DP= BP= ,
∵cos∠MPB= = ,
∴PQ= ,
∴MQ= ;
Ⅳ.如图5,当∠AEQ=90°时,
由对称性可得∠AEQ=∠BDQ=90°,
∴MQ= ;
综上所述,MQ的值为 或 或 ;
②△ACG和△DEG的面积之比为 .
理由:如图6,∵DM∥AF,
∴DF=AM=DE=1,
又由对称性可得GE=GD,
∴△DEG是等边三角形,
∴∠EDF=90°﹣60°=30°,
∴∠DEF=75°=∠MDE,
∴∠GDM=75°﹣60°=15°,
∴∠GMD=∠PGD﹣∠GDM=15°,
∴GMD=∠GDM,
∴GM=GD=1,
过C作CH⊥AB于H,
由∠BAC=30°可得CH= AC= AB=1=MG,AH= ,
∴CG=MH= ﹣1,
∴S△ACG= CG×CH= ,
∵S△DEG= ,
∴S△ACG:S△DEG= .
【考点】圆的综合题
【解析】【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB=28°,进而得到 =2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2 , 即可得到PR= ,MR= ,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值为 或 或 ;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH⊥AB于H,由∠BAC=30°可得CH= AC=1=MG,即可得到CG=MH= ﹣1,进而得出S△ACG= CG×CH= ,再根据S△DEG= ,即可得到△ACG和△DEG的面积之比.
17、【答案】(1)解:连接CE,
∵在△ABC中,AC=BC,∠ACB=90°,
∴∠B=45°,
∵EF是⊙O的切线,
∴∠FEC=∠B=45°,∠FEO=90°,
∴∠CEO=45°,
∵DE∥CF,
∴∠ECD=∠FEC=45°,
∴∠EOC=90°,
∴EF∥OD,
∴四边形CDEF是平行四边形;
(2)解:过G作GN⊥BC于M,
∴△GMB是等腰直角三角形,
∴MB=GM,
∵四边形CDEF是平行四边形,
∴∠FCD=∠FED,
∵∠ACD+∠GCB=∠GCB+∠CGM=90°,
∴∠CGM=∠ACD,
∴∠CGM=∠DEF,
∵tan∠DEF=2,
∴tan∠CGM= =2,
∴CM=2GM,
∴CM+BM=2GM+GM=3,
∴GM=1,
∴BG= GM= .
【考点】平行四边形的判定与性质,切线的性质,解直角三角形
【解析】【分析】(1)连接CE,根据等腰直角三角形的性质得到∠B=45°,根据切线的性质得到∠FEC=∠B=45°,∠FEO=90°,根据平行线的性质得到∠ECD=∠FEC=45°,得到∠EOC=90°,求得EF∥OD,于是得到结论;(2)过G作GN⊥BC于N,得到△GMB是等腰直角三角形,得到MB=GM,根据平行四边形的性质得到∠FCD=∠FED,根据余角的性质得到∠CGM=∠ACD,等量代换得到∠CGM=∠DEF,根据三角函数的定义得到CM=2GM,于是得到结论.
18、【答案】(1)解:β=α+90°,γ=﹣α+180°
连接OB,
∴由圆周角定理可知:2∠BCA=360°﹣∠BOA,
∵OB=OA,
∴∠OBA=∠OAB=α,
∴∠BOA=180°﹣2α,
∴2β=360°﹣(180°﹣2α),
∴β=α+90°,
∵D是BC的中点,DE⊥BC,
∴OE是线段BC的垂直平分线,
∴BE=CE,∠BED=∠CED,∠EDC=90°
∵∠BCA=∠EDC+∠CED,
∴β=90°+∠CED,
∴∠CED=α,
∴∠CED=∠OBA=α,
∴O、A、E、B四点共圆,
∴∠EBO+∠EAG=180°,
∴∠EBA+∠OBA+∠EAG=180°,
∴γ+α=180°
(2)解:当γ=135°时,此时图形如图所示,
∴α=45°,β=135°,
∴∠BOA=90°,∠BCE=45°,
由(1)可知:O、A、E、B四点共圆,
∴∠BEC=90°,
∵△ABE的面积为△ABC的面积的4倍,
∴ ,
∴ ,
设CE=3x,AC=x,
由(1)可知:BC=2CD=6,
∵∠BCE=45°,
∴CE=BE=3x,
∴由勾股定理可知:(3x)2+(3x)2=62 ,
x= ,
∴BE=CE=3 ,AC= ,
∴AE=AC+CE=4 ,
在Rt△ABE中,
由勾股定理可知:AB2=(3 )2+(4 )2 ,
∴AB=5 ,
∵∠BAO=45°,
∴∠AOB=90°,
在Rt△AOB中,设半径为r,
由勾股定理可知:AB2=2r2 ,
∴r=5,
∴⊙O半径的长为5.
【考点】余角和补角,三角形的面积,勾股定理,圆的综合题
【解析】【分析】(1)由圆周角定理即可得出β=α+90°,然后根据D是BC的中点,DE⊥BC,可知∠EDC=90°,由三角形外角的性质即可得出∠CED=α,从而可知O、A、E、B四点共圆,由圆内接四边形的性质可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面积为△ABC的面积的4倍,所以 ,根据勾股定理即可求出AE、AC的长度,从而可求出AB的长度,再由勾股定理即可求出⊙O的半径r;
19、【答案】(1)解:在半对角四边形ABCD中,∠B=∠D,∠C=∠A.
∵∠A+∠B+∠C+∠D=360°,
∴3∠B+3∠C=360°.
∴∠B+∠C=120°.
即∠B与∠C的度数之和120°.
(2)证明:在△BED和△BEO中,
.
∴△BED≌△BEO(SAS).
∴∠BDE=∠BOE.
又∵∠BCF=∠BOE.
∴∠BCF=∠BDE.
如下图,连结OC.
设∠EAF=.则∠AFE=2∠EAF=2.
∴∠EFC=180°-∠AFE=180°-2.
∵OA=OC,
∴∠OAC=∠OCA=.
∴∠AOC=180°-∠OAC-∠OCA=180°-2.
∴∠ABC=∠AOC=∠EFC.
∴四边形DBCF是半对角四边形.
(3)解:如下图,作过点OM⊥BC于点M.
∵四边形DBCF是半对角四边形,
∴∠ABC+∠ACB=120°.
∴∠BAC=60°.
∴∠BOC=2∠BAC=120°.
∵OB=OC
∴∠OBC=∠OCB=30°.
∴BC=2BM=BO=BD.
∵DG⊥OB,
∴∠HGB=∠BAC=60°.
∵∠DBG=∠CBA,
∴△DBG△CBA.
∴=2=.
∵DH=BG,BG=2HG.
∴DG=3HG.
∴=
∴=.
【考点】三角形内角和定理,全等三角形的判定与性质,等腰三角形的性质,含30度角的直角三角形,相似三角形的判定与性质
【解析】【分析】(1)在半对角四边形ABCD中,∠B=∠D,∠C=∠A;根据四边形的内角和为360°,得出∠B与∠C的度数之和.
(2)如图连接OC,根据条件先证△BED≌△BEO,再根据全等三角形的性质得出∠BCF=∠BOE=∠BDE;设∠EAF=.则∠AFE=2∠EAF=2得出∠EFC=180°-∠AFE=180°-2;再根据OA=OC得出∠OAC=∠OCA=, 根据三角形内角和得出∠AOC=180°-∠OAC-∠OCA=180°-2;从而得证.
(3)如下图,作过点OM⊥BC于点M,由四边形DBCF是半对角四边形,得出∠ABC+∠ACB=120°,∠BAC=60°.∠BOC=2∠BAC=120°;再由OB=OC,得出∠OBC=∠OCB=30°.BC=2BM=BO=BD;根据△DBG~△CBA得出答案.
20、【答案】(1)解:∵直线与⊙O相切,
∴OC⊥CD;
又∵AD⊥CD,
∴AD//OC,
∴∠DAC=∠OCA;
又∵OC=OA,
∴∠OAC=∠OCA,
∴∠DAC=∠OAC;
∴AC平分∠DAO.
(2)解:①∵AD//OC,∠DAO=105°,
∴∠EOC=∠DAO=105°;
∵∠E=30°,
∴∠OCE=45°.
②作OG⊥CE于点G,可得FG=CG,
∵OC=2,∠OCE=45°.
∴CG=OG=2,
∴FG=2;
∵在RT△OGE中,∠E=30°,
∴GE=2,
∴EF=GE-FG=2-2.
【考点】平行线的判定与性质,三角形内角和定理,角平分线的性质,等腰三角形的性质,切线的性质
【解析】【分析】(1)利用了切线的性质,平行线的判定和性质,等边对等角,角平分线的判定即可得证。
(2)①根据(1)得出的AD//OC,从而得出同位角相等,再利用三角形的内角和定理即可求出答案;②作OG⊥CE于点G,可得FG=CG,根据等边对等角得出CG=OG=FG=2,在根据勾股定理得出GE,从而求出EF=GE-FG.