- 566.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016年山东省济宁市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求
1.在:0,﹣2,1,这四个数中,最小的数是( )
A.0 B.﹣2 C.1 D.
2.下列计算正确的是( )
A.x2•x3=x5 B.x6+x6=x12 C.(x2)3=x5 D.x﹣1=x
3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是( )
A.20° B.30° C.35° D.50°
4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )
A. B. C. D.
5.如图,在⊙O中, =,∠AOB=40°,则∠ADC的度数是( )
A.40° B.30° C.20° D.15°
6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是( )
A.﹣3 B.0 C.6 D.9
7.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是( )
A.16cm B.18cm C.20cm D.21cm
8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:
参赛者编号
1
2
3
4
5
成绩/分
96
88
86
93
86
那么这五位同学演讲成绩的众数与中位数依次是( )
A.96,88, B.86,86 C.88,86 D.86,88
9.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )
A. B. C. D.
10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )
A.60 B.80 C.30 D.40
二、填空题:本大题共5小题,每小题3分,共15分
11.若式子有意义,则实数x的取值范围是 .
12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件: ,使△AEH≌△CEB.
13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于 .
14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果
比原来提前0.4h到达,这辆汽车原来的速度是 km/h.
15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为 .
三、解答题:本大题共7小题,共55分
16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.
17.2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.
请根据图1、图2解答下列问题:
(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;
(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.
18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.
(1)求新坡面的坡角a;
(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.
19.某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.
(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?
(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?
20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.
(1)已知BD=,求正方形ABCD的边长;
(2)猜想线段EM与CN的数量关系并加以证明.
21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.
例如:求点P(﹣1,2)到直线y=3x+7的距离.
解:因为直线y=3x+7,其中k=3,b=7.
所以点P(﹣1,2)到直线y=3x+7的距离为:d====.
根据以上材料,解答下列问题:
(1)求点P(1,﹣1)到直线y=x﹣1的距离;
(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;
(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.
22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).
(1)求抛物线m的解析式;
(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;
(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.
2016年山东省济宁市中考数学试卷
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求
1.在:0,﹣2,1,这四个数中,最小的数是( )
A.0 B.﹣2 C.1 D.
【考点】有理数大小比较.
【分析】根据有理数大小比较的法则解答.
【解答】解:∵在0,﹣2,1,这四个数中,只有﹣2是负数,
∴最小的数是﹣2.
故选B.
2.下列计算正确的是( )
A.x2•x3=x5 B.x6+x6=x12 C.(x2)3=x5 D.x﹣1=x
【考点】负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.
【分析】原式利用同底数幂的乘法,合并同类项,幂的乘方及负整数指数幂法则计算,即可作出判断.
【解答】解:A、原式=x5,正确;
B、原式=2x6,错误;
C、原式=x6,错误;
D、原式=,错误,
故选A
3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是( )
A.20° B.30° C.35° D.50°
【考点】平行线的性质.
【分析】由垂线的性质和平角的定义求出∠3的度数,再由平行线的性质即可得出∠2的度数.
【解答】解:∵AB⊥BC,
∴∠ABC=90°,
∴∠3=180°﹣90°﹣∠1=35°,
∵a∥b,
∴∠2=∠3=35°.
故选:C.
4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )
A. B. C. D.
【考点】简单几何体的三视图.
【分析】观察几何体,找出左视图即可.
【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是,
故选D
5.如图,在⊙O中, =,∠AOB=40°,则∠ADC的度数是( )
A.40° B.30° C.20° D.15°
【考点】圆心角、弧、弦的关系.
【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.
【解答】解:∵在⊙O中, =,
∴∠AOC=∠AOB,
∵∠AOB=40°,
∴∠AOC=40°,
∴∠ADC=∠AOC=20°,
故选C.
6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是( )
A.﹣3 B.0 C.6 D.9
【考点】代数式求值.
【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.
【解答】解:∵x﹣2y=3,
∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;
故选:A.
7.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是( )
A.16cm B.18cm C.20cm D.21cm
【考点】平移的性质.
【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可
【解答】解:∵△ABE向右平移2cm得到△DCF,
∴EF=AD=2cm,AE=DF,
∵△ABE的周长为16cm,
∴AB+BE+AE=16cm,
∴四边形ABFD的周长=AB+BE+EF+DF+AD
=AB+BE+AE+EF+AD
=16cm+2cm+2cm
=20cm.
故选C.
8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:
参赛者编号
1
2
3
4
5
成绩/分
96
88
86
93
86
那么这五位同学演讲成绩的众数与中位数依次是( )
A.96,88, B.86,86 C.88,86 D.86,88
【考点】众数;中位数.
【分析】找出五位同学演讲成绩出现次数最多的分数即为众数,将分数按照从小到大的顺序排列,找出中位数即可.
【解答】解:这五位同学演讲成绩为96,88,86,93,86,
按照从小到大的顺序排列为86,86,88,93,96,
则这五位同学演讲成绩的众数与中位数依次是86,88,
故选D
9.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )
A. B. C. D.
【考点】概率公式;利用轴对称设计图案.
【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.
【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,
∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.
故选B.
10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )
A.60 B.80 C.30 D.40
【考点】反比例函数与一次函数的交点问题.
【分析】
过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.
【解答】解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.
设OA=a,BF=b,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM==a,
∴点A的坐标为(a, a).
∵点A在反比例函数y=的图象上,
∴a×a==48,
解得:a=10,或a=﹣10(舍去).
∴AM=8,OM=6.
∵四边形OACB是菱形,
∴OA=OB=10,BC∥OA,
∴∠FBN=∠AOB.
在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,
∴FN=BF•sin∠FBN=b,BN==b,
∴点F的坐标为(10+b, b).
∵点B在反比例函数y=的图象上,
∴(10+b)×b=48,
解得:b=,或b=(舍去).
∴FN=,BN=﹣5,MN=OB+BN﹣OM=﹣1.
S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=(AM+FN)•MN=(8+)×(﹣1)=×(+1)×(﹣1)=40.
故选D.
二、填空题:本大题共5小题,每小题3分,共15分
11.若式子有意义,则实数x的取值范围是 x≥1 .
【考点】二次根式有意义的条件.
【分析】根据二次根式的性质可以得到x﹣1是非负数,由此即可求解.
【解答】解:依题意得
x﹣1≥0,
∴x≥1.
故答案为:x≥1.
12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件: AH=CB等(只要符合要求即可) ,使△AEH≌△CEB.
【考点】全等三角形的判定.
【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.
【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,
∴∠BEC=∠AEC=90°,
在Rt△AEH中,∠EAH=90°﹣∠AHE,
又∵∠EAH=∠BAD,
∴∠BAD=90°﹣∠AHE,
在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,
∴∠EAH=∠DCH,
∴∠EAH=90°﹣∠CHD=∠BCE,
所以根据AAS添加AH=CB或EH=EB;
根据ASA添加AE=CE.
可证△AEH≌△CEB.
故填空答案:AH=CB或EH=EB或AE=CE.
13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于 .
【考点】平行线分线段成比例.
【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.
【解答】解:∵AG=2,GD=1,
∴AD=3,
∵AB∥CD∥EF,
∴=,
故答案为:.
14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是 80 km/h.
【考点】分式方程的应用.
【分析】设这辆汽车原来的速度是xkm/h,由题意列出分式方程,解方程求出x的值即可.
【解答】解:设这辆汽车原来的速度是xkm/h,由题意列方程得:
,
解得:x=80
经检验,x=80是原方程的解,
所以这辆汽车原来的速度是80km/h.
故答案为:80.
15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为 .
【考点】规律型:数字的变化类.
【分析】把整数1化为,可以发现后一个数的分子恰是前面数的分母,分析即可求解.
【解答】解:把整数1化为,得,,,( ),,,…
可以发现后一个数的分子恰是前面数的分母,
所以,第4个数的分子是2,分母是3,
故答案为:.
三、解答题:本大题共7小题,共55分
16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.
【考点】整式的混合运算—化简求值.
【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.
【解答】解:原式=a2﹣2ab+a2+2ab+b2=2a2+b2,
当a=﹣1,b=时,原式=2+2=4.
17.2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.
请根据图1、图2解答下列问题:
(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;
(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.
【考点】条形统计图;折线统计图.
【分析】(1)将销售总额减去2012、2014、2015年的销售总额,求出2013年的销售额,补全条形统计图即可;
(2)将2015年的销售总额乘以甲品牌剃须刀所占百分比即可.
【解答】解:(1)2013年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),
补全条形图如图:
(2)1.3×17%=0.221(万元).
答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.
18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.
(1)求新坡面的坡角a;
(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.
【考点】解直角三角形的应用-坡度坡角问题.
【分析】(1)由新坡面的坡度为1:,可得tanα=tan∠CAB==,然后由特殊角的三角函数值,求得答案;
(2)首先过点C作CD⊥AB于点D,由坡面BC的坡度为1:1,新坡面的坡度为1:.即可求得AD,BD的长,继而求得AB的长,则可求得答案.
【解答】解:(1)∵新坡面的坡度为1:,
∴tanα=tan∠CAB==,
∴∠α=30°.
答:新坡面的坡角a为30°;
(2)文化墙PM不需要拆除.
过点C作CD⊥AB于点D,则CD=6,
∵坡面BC的坡度为1:1,新坡面的坡度为1:,
∴BD=CD=6,AD=6,
∴AB=AD﹣BD=6﹣6<8,
∴文化墙PM不需要拆除.
19.某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.
(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?
(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?
【考点】一元二次方程的应用.
【分析】(1)设年平均增长率为x,根据:2014年投入资金给×(1+增长率)2=2016年投入资金,列出方程组求解可得;
(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.
【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,
得:1280(1+x)2=1280+1600,
解得:x=0.5或x=﹣2.25(舍),
答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;
(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,
得:1000×8×400+(a﹣1000)×5×400≥5000000,
解得:a≥1900,
答:今年该地至少有1900户享受到优先搬迁租房奖励.
20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.
(1)已知BD=,求正方形ABCD的边长;
(2)猜想线段EM与CN的数量关系并加以证明.
【考点】正方形的性质.
【分析】(1)根据正方形的性质以及勾股定理即可求得;
(2)根据等腰三角形三线合一的性质证得CE⊥AF,进一步得出∠BAF=∠BCN,然后通过证得△ABF≌△CBN得出AF=CN,进而证得△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN=CM.
【解答】解:(1)∵四边形ABCD是正方形,
∴△ABD是等腰直角三角形,
∴2AB2=BD2,
∵BD=,
∴AB=1,
∴正方形ABCD的边长为1;
(2)CN=CM.
证明:∵CF=CA,AF是∠ACF的平分线,
∴CE⊥AF,
∴∠AEN=∠CBN=90°,
∵∠ANE=∠CNB,
∴∠BAF=∠BCN,
在△ABF和△CBN中,
,
∴△ABF≌△CBN(AAS),
∴AF=CN,
∵∠BAF=∠BCN,∠ACN=∠BCN,
∴∠BAF=∠OCM,
∵四边形ABCD是正方形,
∴AC⊥BD,
∴∠ABF=∠COM=90°,
∴△ABF∽△COM,
∴=,
∴==,
即CN=CM.
21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.
例如:求点P(﹣1,2)到直线y=3x+7的距离.
解:因为直线y=3x+7,其中k=3,b=7.
所以点P(﹣1,2)到直线y=3x+7的距离为:d====.
根据以上材料,解答下列问题:
(1)求点P(1,﹣1)到直线y=x﹣1的距离;
(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;
(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.
【考点】一次函数综合题.
【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;
(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;
(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.
【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,
所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;
(2)⊙Q与直线y=x+9的位置关系为相切.
理由如下:
圆心Q(0,5)到直线y=x+9的距离为:d===2,
而⊙O的半径r为2,即d=r,
所以⊙Q与直线y=x+9相切;
(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,
因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,
因为直线y=﹣2x+4与y=﹣2x﹣6平行,
所以这两条直线之间的距离为2.
22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).
(1)求抛物线m的解析式;
(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;
(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.
【考点】二次函数综合题.
【分析】(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;
(2)利用轴对称求最短路径的方法,首先通过B点关于l的对称点B′来确定P点位置,再求出直线B′E的解析式,进而得出P点坐标;
(3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q坐标.
【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上
∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=
∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;
(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)
∴连接EB′交l于点P,如图所示
设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得
解得,
则函数解析式为y=﹣x+
把x=3代入解得y=,
∴点P坐标为(3,);
(3)∵y=﹣x+与x轴交于点D,
∴点D坐标为(7,0),
∵y=﹣x+与抛物线m的对称轴l交于点F,
∴点F坐标为(3,2),
求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k值为2,
设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x﹣14,
设点Q的坐标为(a,),把点Q代入y=2x﹣14得
=2a﹣14
解得a1=9,a2=15.
∴点Q坐标为(9,4)或(15,16).
2016年6月25日