- 147.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
26中校模拟
一、选择题(30分)
1.如图,数轴上点A所表示的数的绝对值是( )
A.-2 B. 2 C. D.
2. 列运算正确的是( )
A.x2•x3=x6 B.x6÷x5=x C.(-x2)4=x6 D.x2+x3=x5
3.如图所示的立体图形的俯视图是( )
A. B. C. D. 3
4. 若点A(-1,2),B(2,-3)在直线y=kx+b上,则函数的图象在( )A.第一、三象限B.第一、二象限.第二、四象限D.第二、三象限
5. 如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是( )A.40°B.30°C.38°D.15°
5 78
6. 不等式组的解集是( )
A.x>4 B.x≤3 C.3≤x<4 D.无解
7. 如图,⊙A经过点E、B、C、O,且C(0,8),E(-6,0),O(0,0),则cos∠OBC的值为( )
A. B. C . D
8.如图,已知DE∥BC,EF∥AB,现得到下列结论:
①;②;③;④.
其中正确比例式的个数有( )A.4个B.3个C.2个D.1个
9. 如图,数学实习小组在高300米的山腰(即PH=300米)P处进行测量,测得对面山坡上A处的俯角为30°,对面山脚B处的俯角60°,已知tan∠ABC=,点P,H,B,C,A在同一个平面上,点H,B,C在同一条直线上,且PH⊥BC,则A,B两点间的距离为( )米
A. B.200 C. D. 100
10.
从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.其中正确的个数为( )
(1)小明骑车在平路上的速度为15 km/h,小明下坡的速度为20km/h
(2)小明在乙地休息了0.1h.
(3)线段AB函数关系式y=-10x+6.5(0≤x≤0.2),EF所对应的函数关系式y=20x-13.5(0.9≤x≤1)
(4)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,丙地与甲地之间的路程为1千米
A.1 B.2 C.3 D.4
9 10
二、填空题(30分)
11.银原子的直径为0.0003微米,用科学记数表示为 微米,
12.计算: = ,
13. 函数中,自变量x的取值范围为 .
14. 分解因式:9x2-6x+1= .
15. 已知扇形的圆心角为120°,弧长为6π,则它的半径为 .
16. 二次函数y=x2+4x-3的最小值是 .
17. 七年级(2)班有46人报名参加文学社或书画社.已知参加文学社的人数比参加书画社的人数多10人,两社都参加的有20人,则参加书画社的有 人
18. 有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,若以BD为腰,则∠C的度数可以是 .
19. 从-1,0,1,2这4个数中,随机抽取一个数记为a,放回并混在一起,再随机抽取一个数记为b,则使得关于x的一次函数y=ax+b不经过第一象限的概率为 .
20. 如图,平行四边形ABCD中,AB>AD,AE,BE,CM,DM分别为∠DAB,∠ABC,∠BCD,∠CDA的平分线,AE与DM相交于点F,BE与CM相交于点N,连接EM.若平行四边形ABCD的周长为42,FM=3,EF=4,则AB的长为 .
三、解答题
21.化简求值
22. 图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB、EF的端点均在小正方形的顶点上.
(1)如图1,作出以AB为对角线的平行四边形,并使其面积等于10,直接写出的周长;
(2)如图2,以线段EF为一边作出等腰△EFG(点G在小正方形顶点处)且顶角为锐角,并使其面积等于4.
23.国家规定,“中小学生每天在校体育锻炼时间不小于1小时”,某地区就“每天在校体育锻炼时间”的问题随机调查了若干名中学生,根据调查结果制作如下统计图(不完整).其中分组情况:A组:时间小于0.5小时;B组:时间大于等于0.5小时且小于1小时;C组:时间大于等于1小时且小于1.5小时;D组:时间大于等于1.5小时.
根据以上信息,回答下列问题:
(1)A组的人数是多少人,并补全条形统计图;
(2)本次调查数据的中位数落在组 ;
(3)根据统计数据估计该地区25 000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有多少人.
24. 正方形ABCD中,对角线AC、BD交于点O,E为BD上一点,延长AE到点N,使AE=EN,连接CN、CE.
(1)求证:△CAN为直角三角形.
(2)若AN=,正方形的边长为6,求BE的长.
25. 某校在去年购买A,B两种足球,费用分别为2400元和2019元,其中A种足球数量是B种足球数量的2倍,B种足球单价比A种足球单价多80元/个.
(1)求A,B两种足球的单价;
(2)由于该校今年被定为“足球特色校”,学校决定再次购买A,B两种足球共18个,且本次购买B种足球的数量不少于A种足球数量的2倍,若单价不变,则本次如何购买才能使费用W最少?
26. 如图,在Rt△ACB中,∠C=90°,D是AB上一点,以BD为直径的⊙O切AC于点E,交BC于点F,连接DF,OP⊥AB交⊙O于点P,连接ED、EP,过点A作DQ⊥PE于点Q,
(1)求证:DF=2CE;
(2)求证:∠A=2∠P
(3)在(2)的条件下:若BC=,sinB=,连接OQ,求线段OQ的长
27,如图,点A(-2,0)、C(3,3)在抛物线y=ax2+bx+上,点y轴上,且DC⊥BC,∠BCD绕点C顺时针旋转后两边与x轴、y轴分别相交于点E、F.
(1)求抛物线的解析式;
(2)CF能否经过抛物线的顶点?若能,求出此时点E的坐标;若不能,说明理由;
(3)若△FDC是等腰三角形,求点F的坐标.
24.
证明:∵四边形ABCD是正方形,
∴∠ABD=∠CBD=45°,AB=CB,
在△ABE和∠CBE中,AB=CB,∠ABE=∠CBE,BE=BE,
∴△ABE≌△CBE(SAS),
∴AE=CE;
∵AE=CE,AE=EN,
∴∠EAC=∠ECA,CE=EN,
∴∠ECN=∠N,
∵∠EAC+∠ECA+∠ECN+∠N=180°,
∴∠ACE+∠ECN=90°,
即∠ACN=90°,
∴△CAN为直角三角形;
25. (1)设A种足球单价为x元/个,则B足球单价为(x+80)元/个,
根据题意,得:,
解得:x=120,
经检验:x=120是方程的解,
答:A种足球单价为120元/个,B足球单价为200元/个.
(2)设再次购买A种足球x个,则B种足球为(18-x)个;
根据题意,得:W=120x+200(18-x)=-80x+3600,
∵18-x≥2x, ∴x≤6, ∵-80<0,
∴W随x的增大而减小,
∴当x=6时,W最小,此时18-x=12,
答:本次购买A种足球6个,B种足球12个,才能使购买费用W最少.
26(1)证明:连接OE交DF于G,
∵AC切⊙O于E,
∴∠CEO=90°.
又∵BD为⊙O的直径,
∴∠DFC=∠DFB=90°.
∵∠C=90°,
∴四边形CEGF为矩形.
∴CE=GF,∠EGF=90°,
∴DF=2CE.
27