• 94.00 KB
  • 2021-05-13 发布

2007年中考数学开封市试卷

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
开封市2007年初中毕业和高中阶段各类学校招生考试 数 学 试 题 ‎ ‎ (满分:150分; 考试时间:120分钟)‎ ‎ ‎ 考生须知:‎ ‎1. 解答的内容一律写在答题卡上,否则以0分计算. 交卷时只交答题卡,本卷由考场处理,考生不得擅自带走.‎ ‎2. 作图或画辅助线要用0.5毫米的黑色签字笔画好.‎ 一、选择题(本大题共7小题,每小题3分,共21分)每小题都有四个选项,其中有且只有一个选项是正确的.‎ ‎1. 下列计算正确的是 ‎ A. -1+1=0 B. -1-1=0 C. 3÷=1 D. 32=6‎ ‎2. 下列事件中是必然事件的是 ‎ A. 打开电视机,正在播广告. ‎ ‎ B. 从一个只装有白球的缸里摸出一个球,摸出的球是白球.‎ ‎ C. 从一定高度落下的图钉,落地后钉尖朝上. ‎ D. 今年10月1日 ,厦门市的天气一定是晴天. ‎ ‎3. 如图1,在直角△ABC中,∠C=90°,若AB=5,AC=4,‎ ‎ 则sin∠B=‎ ‎ A. B. C. D. ‎4. 下列关于作图的语句中正确的是 ‎ A. 画直线AB=10厘米. ‎ B. 画射线OB=10厘米.‎ ‎ C. 已知A、B、C三点,过这三点画一条直线. ‎ ‎ D. 过直线AB外一点画一条直线和直线AB平行.‎ ‎5. “比a的大1的数”用代数式表示是 ‎ A. a+1 B. a+1 C. a D. a-1‎ ‎6. 已知:如图2,在△ABC中,∠ADE=∠C,则下列等式成立的是 ‎ A. = B. = ‎ ‎1. 下列计算正确的是 ‎ A. -1+1=0 B. -1-1=0 C. 3÷=1 D. 32=6‎ ‎2. 下列事件中是必然事件的是 ‎ A. 打开电视机,正在播广告. ‎ ‎ B. 从一个只装有白球的缸里摸出一个球,摸出的球是白球.‎ ‎ C. 从一定高度落下的图钉,落地后钉尖朝上. ‎ D. 今年10月1日 ,厦门市的天气一定是晴天. ‎ ‎3. 如图1,在直角△ABC中,∠C=90°,若AB=5,AC=4,‎ ‎ 则sin∠B=‎ ‎ A. B. C. D. ‎4. 下列关于作图的语句中正确的是 ‎ A. 画直线AB=10厘米. ‎ B. 画射线OB=10厘米.‎ ‎ C. 已知A、B、C三点,过这三点画一条直线. ‎ ‎ D. 过直线AB外一点画一条直线和直线AB平行.‎ ‎5. “比a的大1的数”用代数式表示是 ‎ A. a+1 B. a+1 C. a D. a-1‎ ‎6. 已知:如图2,在△ABC中,∠ADE=∠C,则下列等式成立的是 ‎ A. = B. = ‎ ‎1. 下列计算正确的是 ‎ A. -1+1=0 B. -1-1=0 C. 3÷=1 D. 32=6‎ ‎2. 下列事件中是必然事件的是 ‎ A. 打开电视机,正在播广告. ‎ ‎ B. 从一个只装有白球的缸里摸出一个球,摸出的球是白球.‎ ‎ C. 从一定高度落下的图钉,落地后钉尖朝上. ‎ D. 今年10月1日 ,厦门市的天气一定是晴天. ‎ ‎3. 如图1,在直角△ABC中,∠C=90°,若AB=5,AC=4,‎ ‎ 则sin∠B=‎ ‎ A. B. C. D. ‎4. 下列关于作图的语句中正确的是 ‎ A. 画直线AB=10厘米. ‎ B. 画射线OB=10厘米.‎ ‎ C. 已知A、B、C三点,过这三点画一条直线. ‎ ‎ D. 过直线AB外一点画一条直线和直线AB平行.‎ ‎5. “比a的大1的数”用代数式表示是 ‎ A. a+1 B. a+1 C. a D. a-1‎ ‎6. 已知:如图2,在△ABC中,∠ADE=∠C,则下列等式成立的是 ‎ A. = B. = ‎ C. = D. = ‎7. 已知:a+b=m,ab=-4, 化简(a-2)(b-2)的结果是 ‎ A. 6 B. 2 m-8 C. 2 m D. -2 m 二、填空题(本大题共10小题,每小题4分,共40分)‎ ‎8. -3的相反数是 .‎ ‎9. 分解因式:5x+5y= .‎ ‎10. 如图3,已知:DE∥BC,∠ABC=50°,则∠ADE= 度. ‎ C. = D. = ‎7. 已知:a+b=m,ab=-4, 化简(a-2)(b-2)的结果是 ‎ A. 6 B. 2 m-8 C. 2 m D. -2 m 二、填空题(本大题共10小题,每小题4分,共40分)‎ ‎8. -3的相反数是 .‎ ‎9. 分解因式:5x+5y= .‎ ‎10. 如图3,已知:DE∥BC,∠ABC=50°,则∠ADE= 度. ‎ C. = D. = ‎7. 已知:a+b=m,ab=-4, 化简(a-2)(b-2)的结果是 ‎ A. 6 B. 2 m-8 C. 2 m D. -2 m 二、填空题(本大题共10小题,每小题4分,共40分)‎ ‎8. -3的相反数是 .‎ ‎9. 分解因式:5x+5y= .‎ ‎10. 如图3,已知:DE∥BC,∠ABC=50°,则∠ADE= 度. ‎ ‎11. 25÷23= .‎ ‎12. 某班有49位学生,其中有23位女生. 在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀. 如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是 .‎ ‎13. 如图4,⊙O的直径AB垂直于弦CD,垂足为E,‎ 若∠COD=120°,OE=3厘米,则OD= 厘米.‎ ‎14. 如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规 则如下:同时抛出两个正面,乙得1分;抛出其他结果,‎ 甲得1分. 谁先累积到10分,谁就获胜.你认为 ‎ ‎(填“甲”或“乙”)获胜的可能性更大.‎ 15. 一根蜡烛在凸透镜下成一实像,物距u,像距v和凸透镜的焦距f 满足关系式:+=. 若f=6厘米,v=8厘米,则物距u= 厘米.‎ ‎16. 已知函数y=-2 ,则x的取值范围是 . 若x是整数,则此函数的最小值是 .‎ ‎17. 已知平面直角坐标系上的三个点O(0,0)、A(-1,1)、B(-1,0),将△ABO绕点O按顺时针方向旋转135°,则点A、B的对应点A1、B1的坐标分别是A1( , ) ,B1( , ) .‎ 三、解答题(本大题共9小题,共89分)‎ ‎18. (本题满分7分) 计算: 22+(4-7)÷+() ‎ ‎11. 25÷23= .‎ ‎12. 某班有49位学生,其中有23位女生.‎ ‎ 在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀. 如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是 .‎ ‎13. 如图4,⊙O的直径AB垂直于弦CD,垂足为E,‎ 若∠COD=120°,OE=3厘米,则OD= 厘米.‎ ‎14. 如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规 则如下:同时抛出两个正面,乙得1分;抛出其他结果,‎ 甲得1分. 谁先累积到10分,谁就获胜.你认为 ‎ ‎(填“甲”或“乙”)获胜的可能性更大.‎ 15. 一根蜡烛在凸透镜下成一实像,物距u,像距v和凸透镜的焦距f 满足关系式:+=. 若f=6厘米,v=8厘米,则物距u= 厘米.‎ ‎16. 已知函数y=-2 ,则x的取值范围是 . 若x是整数,则此函数的最小值是 .‎ ‎17. 已知平面直角坐标系上的三个点O(0,0)、A(-1,1)、B(-1,0),将△ABO绕点O按顺时针方向旋转135°,则点A、B的对应点A1、B1的坐标分别是A1( , ) ,B1( , ) .‎ 三、解答题(本大题共9小题,共89分)‎ ‎18. (本题满分7分) 计算: 22+(4-7)÷+() ‎ ‎19. (本题满分7分) 一个物体的正视图、俯视图如图5所示,‎ 请你画出该物体的左视图并说出该物体形状的名称.‎ 20. ‎(本题满分8分) 某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示: ‎ 年龄组 ‎ 13岁 ‎ 14岁 ‎ 15岁 ‎ 16岁 参赛人数 ‎ 5‎ ‎ 19‎ ‎ 12‎ ‎ 14‎ ‎(1) 求全体参赛选手年龄的众数、中位数;‎ ‎ (2) 小明说,他所在年龄组的参赛人数占全体参赛人数的28%. ‎ 你认为小明是哪个年龄组的选手?请说明理由.‎ ‎21. (本题满分10分) 如图6,已知:在直角△ABC中,∠C=90°,‎ BD平分∠ABC且交AC于D.‎ ‎19. (本题满分7分) 一个物体的正视图、俯视图如图5所示,‎ 请你画出该物体的左视图并说出该物体形状的名称.‎ 20. ‎(本题满分8分) 某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示: ‎ 年龄组 ‎ 13岁 ‎ 14岁 ‎ 15岁 ‎ 16岁 参赛人数 ‎ 5‎ ‎ 19‎ ‎ 12‎ ‎ 14‎ ‎(1) 求全体参赛选手年龄的众数、中位数;‎ ‎ (2) 小明说,他所在年龄组的参赛人数占全体参赛人数的28%. ‎ 你认为小明是哪个年龄组的选手?请说明理由.‎ ‎21. (本题满分10分) 如图6,已知:在直角△ABC中,∠C=90°,‎ BD平分∠ABC且交AC于D.‎ ‎19. (本题满分7分) 一个物体的正视图、俯视图如图5所示,‎ 请你画出该物体的左视图并说出该物体形状的名称.‎ 21. ‎(本题满分8分) 某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示: ‎ 年龄组 ‎ 13岁 ‎ 14岁 ‎ 15岁 ‎ 16岁 参赛人数 ‎ 5‎ ‎ 19‎ ‎ 12‎ ‎ 14‎ ‎(1) 求全体参赛选手年龄的众数、中位数;‎ ‎ (2) 小明说,他所在年龄组的参赛人数占全体参赛人数的28%. ‎ 你认为小明是哪个年龄组的选手?请说明理由.‎ ‎21. (本题满分10分) 如图6,已知:在直角△ABC中,∠C=90°,‎ BD平分∠ABC且交AC于D.‎ ‎(1)若∠BAC=30°,求证: AD=BD;‎ ‎ (2)若AP平分∠BAC且交BD于P,求∠BPA的度数.‎ ‎22. (本题满分10分) 某软件公司开发出一种图书管理软件,前期投入的开发、广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元.‎ ‎(1)若∠BAC=30°,求证: AD=BD;‎ ‎ (2)若AP平分∠BAC且交BD于P,求∠BPA的度数.‎ ‎(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式;‎ ‎ (2)如果每套定价700元,软件公司至少要售出多少套软件才能确保不亏本?‎ 23. ‎(本题满分10分) 已知:如图7,P是正方形ABCD 内一点,在正方形ABCD外有一点E,‎ 满足∠ABE=∠CBP,BE=BP,‎ ‎(1) 求证:△CPB≌△AEB;‎ ‎(2) 求证:PB⊥BE;‎ ‎(3) 若PA∶PB=1∶2,∠APB=135°,‎ 求cos∠PAE的值.‎ ‎24. (本题满分12分) 已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),‎ ‎ (1) 若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;‎ ‎(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是 ‎ ‎(请将结论写在横线上,不要写解答过程);‎ ‎(友情提示:结论要填在答题卡相应的位置上)‎ ‎ (3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.‎ ‎25. (本题满分12分) 已知:⊙O1与⊙O2相交于点A、B,过点B作CD⊥AB,分别交⊙O1和⊙O2于点C、D.‎ ‎ (1)如图8,求证:AC是⊙O1的直径;‎ ‎ (2)若AC=AD,‎ ‎① 如图9,连结BO2、O1 O2,求证:四边形O1C BO2是平行四边形;‎ ‎ ② 若点O1在⊙O2外,延长O2O1交⊙O1于点M,在劣弧上任取一点E(点E与点B不重合). EB的延长线交优弧于点F,如图10所示. 连结 AE、AF. ‎ 则AE AB(请在横线上填上 “≥、≤、<、>”这四个不等号中的一个)并加以证明.‎ ‎(友情提示:结论要填在答题卡相应的位置上)‎ ‎26. (本题满分13分) 已知:O是坐标原点,P(m,n)(m>0)是函数y = (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m). 设△OPA的面积为s,且s=1+.‎ ‎ (1)当n=1时,求点A的坐标;‎ ‎ (2)若OP=AP,求k的值;‎ ‎ (3 ) 设n是小于20的整数,且k≠,求OP2的最小值. ‎ ‎26. (本题满分13分) 已知:O是坐标原点,P(m,n)(m>0)是函数y = (k>0)上的点,过点P作直线PA⊥OP于P,直线PA与x轴的正半轴交于点A(a,0)(a>m). 设△OPA的面积为s,且s=1+.‎ ‎ (1)当n=1时,求点A的坐标;‎ ‎ (2)若OP=AP,求k的值;‎ ‎ (3 ) 设n是小于20的整数,且k≠,求OP2的最小值. ‎