- 269.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2019-2019学年九年级质量调研检测
数学试题
(考试时间: 120 分钟;满分:120分)
题号
一
二
三
四
合计
合计人
复核人
15
16
17
18
19
20
21
22
23
24
得分
得 分
阅卷人
复核人
一、选择题(本题满分24分,共有8道小题,每小题3分)
下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面的表格内.
1.3的平方根是( )
A.9 B. C. D.
2.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是( )
A. B. C. D.
3.观察下列图案,既是中心对称图形又是轴对称图形的是( )
4.如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是( )
C.
B.
A.
D.
5.某校篮球班21名同学的身高如下表:则该校篮球班21
名同学身高的众数和中位数分别是(单位:cm)( )
身高
180
188
186
192
210
人数
4
5
6
4
2
A.186,188 B.186,187 C.186,186 D.210,188
6.如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转 90°,得到△A’B’O ,则点A’的坐标为( )
A.(3,1) B.(3,2) C.(2,3) D.(1,3)
7.如图,点A在双曲线上,点B在双曲线(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是10,则k的值为( )A.14 B.10 C.8 D.6
8.如图,扇形DOE的半径为6,边长为2的菱形OABC的顶点A,C,B分别在OD,OE,弧DE上,若把扇形DOE围成一个圆锥,则此圆锥的高为( )
A. B。 C.。 D。
1
2
4
3
0
-1
-2
-3
1
2
3
A
B
(6题图)
(8题图)
(7题图)
请将1—8各小题所选答案的标号填写在下表中相应的位置上
题 号
1
2
3
4
5
6
7
8
答 案
得 分
阅卷人
复核人
二、填空题(本题满分18分,共有6道小题,每小题3分)
请将 9—14各小题的答案填写在第14小题后面的表格内.
9.青岛市生态旅游初步形成,2019年全年实现旅游综合收入908600000元.数908600000用科学记数法表示(保留三个有效数字),是__________.
10. =___________.
11.一车间有甲、乙两个小组,甲组工作效率比乙组高25%,因此甲组加工2019个零件所用时间比乙组加工1800个零件所用时间还少30分钟,若设乙组每小时加工零件x个,可列方程为______________________.
12. 在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中
摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:
次数
1
2
3
4
5
6
7
8
9
10
黑棋数
1
3
0
2
3
4
2
1
1
3
根据以上数据,估算袋中的白棋子数量为 枚.
13.如图,AD是△ABC的中线,∠ADC=45°,BC=10cm,把△ABC沿直线AD折叠,点C落在C处,连接B C,则B C= cm.
(13题图)
(14题图)
14.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA、OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B102的坐标为 .
请将9—14各小题的答案填写在下表的相应位置上:
题 号
9
10
11
答 案
题 号
12
13
14
答 案
得 分
阅卷人
复核人
三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.
15.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
请你补全这个输水管道的圆形截面;
15题图
结论:
四、解答题(本题满分74分,共有9道小题)
得 分
阅卷人
复核人
16.(本小题满分8分,每题4分)
(1)化简: (2) 解方程组:
解:
解:
得 分
阅卷人
复核人
17.(本小题满分6分)
最近“雾霾天气”对环境的危害越来越受到人们关注.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中提供的信息,解答下列问题:
(1)计算被抽取的天数;
(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;
(3)请估计该市这一年(365天)达到优和良的总天数.
得 分
阅卷人
复核人
18.(本小题满分6分)
下面是两个可以自由转动的转盘,每个转盘被分成了三个相等的扇形,小明和小亮用它们做配紫色(红色与蓝色能配成紫色)游戏.两人约定:若配成紫色小明得1分,否则小亮得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?
解:
得 分
阅卷人
复核人
19.(本小题满分6分)
某中学为落实市××局提出的“全员育人,创办特色学校”的会议精神,计划打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.
符合题意的组建方案有几种?请你帮学校设计出来;
得 分
阅卷人
复核人
20.(本小题满分8分)
某小学门口有一直线马路,为方便学生过马路,交警在门口设有一定宽度的斑马线,斑马线的宽度为4 米,为安全起见,规定车头距斑马线后端的水平距离CD不得低于2 米。现有一旅游车在路口遇红灯刹车停下,此时汽车里司机与斑马线前后两端的视角分别为∠FAE=16° 和∠FAD=31° ,司机距车头的水平距离为0.8 米(E、D、C、B 四点在平行于斑马线的同一直线上.)
(1) 旅游车高至少多少米?
(2) 请问该旅游车停车是否符合上述安全标准?
(参考数据: sin31°≈0.52,tan31°≈0.60,sin16°≈0.27,tan16°≈0.28)
得 分
阅卷人
复核人
A
B
C
D
E
F
21.(本小题满分8分)
已知:如图,在直角梯形ABCD中,AD // BC,AB⊥AD,BC = CD,BE⊥CD,垂足为点E,点F在BD上,连结AF、EF.
(1)求证:AD = ED;
(2)如果AF // CD,判断四边形ADEF是什么特殊四边形.证明你的结论。
得 分
阅卷人
复核人
22.(本小题满分10分)
某新开业超市经销一种水产品,已知水产品每千克成本40元,在第一个月的试销时间内发现, 销量y(kg)随销售单价x(元/
kg)的变化而变化,具体变化规律如下表所示
销售单价x(元/ kg)
……
50
55
60
65
……
销售量y(kg)
……
500
450
400
350
……
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出写出销售量y(千克)与销售单价x(元)之间的函数关系式。
(2)设该水产品的月销售利润(月销售利润=月总销售额-月总成本)为w(元), 写出w与x之间的函数关系式. 并求出x为何值时,销售利润w的值最大?超市开业前用于装修门面投资10000元,请问第一个月能否收回这部分装修投资?
(3)第二个月销售时,物价部门规定销售单价不得高于80元,超市要想在第一个月的基础上全部收回装修投资后,再盈利5750元,那么第二个月里应该确定销售单价为多少元?
得 分
阅卷人
复核人
23.(本小题满分10分)
图①
图②
提出问题:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,(其中n为奇数),连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1).如图②:四边形ABCD中,点E、F是AD的3等分点,点G、H是BC的3等分点,连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
如图③,连接EH、BE、DH,
图③
因为△EGH与△EBH高相等,底的比是1:2,
所以S△EGH=S△EBH
因为△EFH与△DEH高相等,底的比是1:2,
所以S△EFH=S△DEH
所以S△EGH+S△EFH=S△EBH +S△DEH
即S四边形EFHG=S四边形EBHD
连接BD,
因为△ABE与△ABD高相等,底的比是1:3,
所以S△ABE=S△ABD
因为△CDH与△BCD高相等,底的比是1:3,
所以S△CDH=S△BCD
所以S△ABE +S△CDH=S△ABD+S△BCD
=(S△ABD+S△BCD)
=S四边形ABCD
所以S四边形EBHD=S四边形ABCD
所以S四边形EFHG=S四边形EBHD=×S四边形ABCD=S四边形ABCD
(1) 如图④:四边形ABCD中,点E、F是AD的5等分点中最中间2个,点G、H是BC的5等分点中最中间2个,连接EG、FH,猜想:S四边形EFHG与S四边形ABCD之间有什么关系呢
验证你的猜想:
图④
问题解决:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,连接EG、FH,(其中n为奇数)
那么S四边形EFHG与S四边形ABCD之间的关系为: (不必写出求解过程)
问题拓展:仿照上面的探究思路,若n为偶数,请再给出一个一般性结论。(画出图形,不必写出求解过程)
得 分
阅卷人
复核人
24.(本小题满分12分)
已知:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D是AB的中点,连接CD,点P从点C出发,沿CD方向,向点D匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向,向点A匀速运动,速度为2cm/s,连接BP、PQ,设运动时间为t(s)(0≤t≤5),△PQB的面积为y(cm2).解答下列问题:
(1)过点C作CE⊥AB于E ,求CE的长;
(2)求y与t之间的函数关系式;当t为何值时,y有最大值,并求出y的最大值;
(3)是否存在某一时刻t,使得 △PQD为等腰三角形?若存在,求出此时t的值;若不存在,请说明理由.
(第24题备用图)
(第24题图)