- 320.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2012年浙江省金华市中考数学试卷
一.选择题(共10小题)
1.(2012金华市)﹣2的相反数是( )
A.2 B.﹣2 C. D.
考点:相反数。
解答:解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.
故选A.
2.(2012金华市)下列四个立体图形中,主视图为圆的是( )
A. B. C. D.
考点:简单几何体的三视图。
解答:解:A、主视图是正方形,故此选项错误;
B、主视图是圆,故此选项正确;
C、主视图是三角形,故此选项错误;
D、主视图是长方形,故此选项错误;
故选:B.
3.(2012金华市)下列计算正确的是( )
A.a3a2=a6 B.a2+a4=2a2 C.(a3)2=a6 D.(3a)2=a6
考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。
解答:解:A、a3a2=a3+2=a5,故此选项错误;
B、a2和a4不是同类项,不能合并,故此选项错误;
C、(a3)2=a6,故此选项正确;
D、(3a)2=9a2,故此选项错误;
故选:C.
4.(2012金华市)一个正方形的面积是15,估计它的边长大小在( )
A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间
考点:估算无理数的大小;算术平方根。
解答:解:∵一个正方形的面积是15,
∴该正方形的边长为,
∵9<15<16,
∴3<<4.
故选C.
5.(2012金华市)在x=﹣4,﹣1,0,3中,满足不等式组的x值是( )
A.﹣4和0 B.﹣4和﹣1 C.0和3 D.﹣1和0
考点:解一元一次不等式组;不等式的解集。
解答:解:,
由②得,x>﹣2,
故此不等式组的解集为:﹣2<x<2,
x=﹣4,﹣1,0,3中只有﹣1、0满足题意.
故选D.
6.(2012金华市)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( )
A.2 B.3 C.4 D.8
考点:三角形三边关系。
解答:解:由题意,令第三边为X,则5﹣3<X<5+3,即2<X<8,
∵第三边长为偶数,∴第三边长是4或6.
∴三角形的三边长可以为3、5、4.
故选:C.
7.(2012金华市)如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为( )
A.6 B.8 C.10 D.12
考点:平移的性质。
解答:解:根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=8,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.
故选;C.
8.(2012金华市)下列计算错误的是( )
A. B. C. D.
考点:分式的混合运算。
解答:解:A、,故本选项错误;
B、,故本选项正确;
C、=﹣1,故本选项正确;
D、,故本选项正确.
故选A.
9.(2012金华市)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是( )
A. B. C. D.
考点:列表法与树状图法。
解答:解:将一名只会翻译阿拉伯语用A表示,三名只会翻译英语都用B表示,一名两种语言都会翻译用C表示,
画树状图得:
∵共有20种等可能的结果,该组能够翻译上述两种语言的有14种情况,
∴该组能够翻译上述两种语言的概率为:=.
故选B.
10.(2012金华市)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:
①当x>0时,y1>y2; ②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在; ④使得M=1的x值是或.
其中正确的是( )
A.①② B.①④ C.②③ D.③④
考点:二次函数综合题。
解答:解:∵①当x>0时,利用函数图象可以得出y2>y1;∴此选项错误;
∵抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;
∴②当x<0时,根据函数图象可以得出x值越大,M值越大;∴此选项错误;
∵抛物线y1=﹣2x2+2,直线y2=2x+2,与y轴交点坐标为:(0,2),当x=0时,M=2,抛物线y1=﹣2x2+2,最大值为2,故M大于2的x值不存在;
∴③使得M大于2的x值不存在,此选项正确;
∵使得M=1时,可能是y1=﹣2x2+2=1,解得:x1=,x2=﹣,
当y2=2x+2=1,解得:x=﹣,
由图象可得出:当x=>0,此时对应y2=M,
∵抛物线y1=﹣2x2+2与x轴交点坐标为:(1,0),(﹣1,0),
∴当﹣1<x<0,此时对应y1=M,
故M=1时,x1=,x=﹣,
故④使得M=1的x值是或.此选项正确;
故正确的有:③④.
故选:D.
11.(2012金华市)分解因式:x2﹣9= (x+3)(x﹣3) .
考点:因式分解-运用公式法。
解答:解:x2﹣9=(x+3)(x﹣3).
12.(2012金华市)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为 50° .
考点:平行线的性质;余角和补角。
解答:解:∵∠1=40°,
∴∠3=180°﹣∠1﹣45°=180°﹣40°﹣90°=50°,
∵a∥b,
∴∠2=∠3=50°.
故答案为:50°.
13.(2012金华市)在义乌市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是 90 分,众数是 90 分.
考点:众数;折线统计图;中位数。
解答:解:观察折线图可知:成绩为90的最多,所以众数为90;
这组学生共10人,中位数是第5、6名的平均分,
读图可知:第5、6名的成绩都为90,故中位数90.
故答案为:90,90.
14.(2012金华市)正n边形的一个外角的度数为60°,则n的值为 6 .
考点:多边形内角与外角。
解答:解:∵正n边形的一个外角的度数为60°,
∴其内角的度数为:180°﹣60°=120°,
∴=120°,解得n=6.
故答案为:6.
15.(2012金华市)近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为:11,13,15,19,x(单位:万辆),这五个数的平均数为16,则x的值为 22 .
考点:算术平均数。
解答:解:根据平均数的求法:共5个数,这些数之和为:
11+13+15+19+x=16×5,
解得:x=22.
故答案为:22.
16.(2012金华市)如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:
(1)当AB为梯形的底时,点P的横坐标是 ;
(2)当AB为梯形的腰时,点P的横坐标是 2 .
考点:圆周角定理;等边三角形的性质;梯形;解直角三角形。
解答:解:(1)如图1:当AB为梯形的底时,PQ∥AB,
∴Q在CP上,
∵△APQ是等边三角形,CP∥x轴,
∴AC垂直平分PQ,
∵A(0,2),C(0,4),
∴AC=2,
∴PC=AC•tan30°=2×=,
∴当AB为梯形的底时,点P的横坐标是:;
(2)如图2,当AB为梯形的腰时,AQ∥BP,
∴Q在y轴上,
∴BP∥y轴,
∵CP∥x轴,
∴四边形ABPC是平行四边形,
∴CP=AB=2,
∴当AB为梯形的腰时,点P的横坐标是:2.
故答案为:(1),(2)2.
17.(2012金华市)计算:|﹣2|+(﹣1)2012﹣(π﹣4)0.
考点:实数的运算;零指数幂。
解答:解:原式=2+1﹣1,(4分)
=2.…(6分
18.(2012金华市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是 DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等) .(不添加辅助线).
考点:全等三角形的判定。
解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).
(2)证明:在△BDF和△CDE中
∵
∴△BDF≌△CDE.
19.(2012金华市)学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:
(1)在统计的这段时间内,共有 16 万人到市图书馆阅读,其中商人所占百分比是 12.5% ,并将条形统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);
(2)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工?
考点:条形统计图;用样本估计总体;扇形统计图。
解答:解:(1)4÷25%=16 2÷16×100%=12.5%
(2)职工人数约为:
28000×=10500人 …(6分)
20.(2012金华市)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧AC的长.
考点:切线的判定;圆周角定理;弧长的计算。
解答:解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,
∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,
∴AE是⊙O的切线;
(3)如图,连接OC,
∵OB=OC,∠ABC=60°,
∴△OBC是等边三角形,
∴OB=BC=4,∠BOC=60°,
∴∠AOC=120°,
∴劣弧AC的长为.
21.(2012金华市)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
考点:反比例函数综合题。
解答:解:(1)∵点E(4,n)在边AB上,
∴OA=4,
在Rt△AOB中,∵tan∠BOA=,
∴AB=OA×tan∠BOA=4×=2;
(2)根据(1),可得点B的坐标为(4,2),
∵点D为OB的中点,
∴点D(2,1)
∴=1,
解得k=2,
∴反比例函数解析式为y=,
又∵点E(4,n)在反比例函数图象上,
∴=n,
解得n=;
(3)如图,设点F(a,2),
∵反比例函数的图象与矩形的边BC交于点F,
∴=2,
解得a=1,
∴CF=1,
连接FG,设OG=t,则OG=FG=t,CG=2﹣t,
在Rt△CGF中,GF2=CF2+CG2,
即t2=(2﹣t)2+12,
解得t=,
∴OG=t=.
22.(2012金华市)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.
(1)求小明骑车的速度和在甲地游玩的时间;
(2)小明从家出发多少小时后被妈妈追上?此时离家多远?
(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.
考点:一次函数的应用。www .xk b1.com
解答:解:(1)小明骑车速度:
在甲地游玩的时间是1﹣0.5=0.5(h).
(2)妈妈驾车速度:20×3=60(km/h)
设直线BC解析式为y=20x+b1,
把点B(1,10)代入得b1=﹣10
∴y=20x﹣10
设直线DE解析式为y=60x+b2,把点D(,0)
代入得b2=﹣80∴y=60x﹣80…(5分)
∴
解得
∴交点F(1.75,25).
答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.
(3)方法一:设从家到乙地的路程为m(km)
则点E(x1,m),点C(x2,m)分别代入y=60x﹣80,y=20x﹣10
得:,
∵
∴∴m=30.
方法二:设从妈妈追上小明的地点到乙地的路程为n(km),
由题意得:∴n=5
∴从家到乙地的路程为5+25=30(km).
23.(2012金华市)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.
(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;
(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.
考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质。
解答:解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,
∴∠CC1B=∠C1CB=45°,..…(2分)
∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.…(3分)
(2)∵△ABC≌△A1BC1,
∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,
∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1,
∴∠ABA1=∠CBC1,
∴△ABA1∽△CBC1.…(5分)
∴,
∵S△ABA1=4,
∴S△CBC1=;…(7分)
(3)过点B作BD⊥AC,D为垂足,
∵△ABC为锐角三角形,
∴点D在线段AC上,
在Rt△BCD中,BD=BC×sin45°=,…(8分)
①如图1,当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=﹣2;…(9分)
②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+AE=2+5=7.…(10分)
24.(2012金华市)如图1,已知直线y=kx与抛物线y=交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
考点:二次函数综合题。
解答:解:(1)把点A(3,6)代入y=kx 得;
∵6=3k,
∴k=2,
∴y=2x.(2012金华市)
OA=.…(3分)
(2)是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时;
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…(5分),
∴,
当点P、Q在抛物线和直线上不同位置时,同理可得. …(7分)①①
(3)如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC=OA=
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴,
∴OF=,
∴点F(,0),
设点B(x,),
过点B作BK⊥AR于点K,则△AKB∽△ARF,
∴,
即,
解得x1=6,x2=3(舍去),
∴点B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5 …(8分);
(求AB也可采用下面的方法)
设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得
k=,b=10,
∴,
∴,
∴(舍去),,
∴B(6,2),
∴AB=5…(8分)
(其它方法求出AB的长酌情给分)
在△ABE与△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.…(9分)
设OE=x,则AE=﹣x (),
由△ABE∽△OED得,
∴
∴()…(10分)
∴顶点为(,)
如答图3,当时,OE=x=,此时E点有1个;
当时,任取一个m的值都对应着两个x值,此时E点有2个.
∴当时,E点只有1个…(11分)
当时,E点有2个…(12分).