- 1.05 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.
2. 在直角坐标系中,、,将经过旋转、平移变化后得到如图所示的.
(1)求经过、、三点的抛物线的解析式;(2)连结,点是位于线段
上方的抛物线上一动点,若直线将的面积分成两部分,求此时点的坐标;(3)现将、分别向下、向左以的速度同时平移,求出在此运动过程中与重叠部分面积的最大值.
3. 如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.⑴若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;⑵在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标;⑶设点P
为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.
第25题图
4. 如图,在平面直角坐标系中,已知抛物线与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为
(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标
;(2)试探究抛物线上是否存在点F,使≌,若存在,请直接写出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,是等腰三角形.
5. 如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.
6. 如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1
F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.
7. 如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.
8. 如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B(2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D. (1)求此抛物线对应的函数表达式及点C的坐标;(2)若抛物线上存在点M,使得△BCM的面积为,求出点M的坐标;(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标.
1.【解答】解:(1)∵直线y=x﹣3交于A、B两点,其中点A在y轴上,
∴A(0,﹣3),∵B(﹣4,﹣5),∴,∴,∴抛物线解析式为y=x2+x﹣3,
(2)存在,设P(m,m2+m﹣3),(m<0),∴D(m, m﹣3),∴PD=|m2+4m|∵PD∥AO,
∴当PD=OA=3,故存在以O,A,P,D为顶点的平行四边形,∴|m2+4m|=3,
①当m2+4m=3时,∴m1=﹣2﹣,m2=﹣2+(舍),∴m2+m﹣3=﹣1﹣,∴P(﹣2﹣,﹣1﹣),
②当m2+4m=﹣3时,∴m1=﹣1,m2=﹣3,Ⅰ、m1=﹣1,∴m2+m﹣3=﹣,∴P(﹣1,﹣),
Ⅱ、m2=﹣3,∴m2+m﹣3=﹣,∴P(﹣3,﹣),
∴点P的坐标为(﹣2﹣,﹣1﹣),(﹣1,﹣),(﹣3,﹣).
(3)如图,∵△PAM为等腰直角三角形,∴∠BAP=45°,
∵直线AP可以看做是直线AB绕点A逆时针旋转45°所得,
设直线AP解析式为y=kx﹣3,∵直线AB解析式为y=x﹣3,∴k==3,
∴直线AP解析式为y=3x﹣3,联立,∴x1=0(舍)x2=﹣
当x=﹣时,y=﹣, ∴P(﹣,﹣).
2. 解析:(1)∵、,将经过旋转、平移变化得到如图所示的,
∴.∴.…………………(1分)
设经过、、三点的抛物线解析式为,
则有,解得:.
∴抛物线解析式为.
(2)如图4.1所示,设直线与交于点. ∵直线将的面积分成两部分,
∴或,过作于点,则∥.
∴∽,∴.∴当时,,
∴,∴.
设直线解析式为,则可求得其解析式为,
∴,∴(舍去), ∴.
当时,同理可得.
(3)设平移的距离为,与重叠部分的面积为.
可由已知求出的解析式为,与轴交点坐标为.
的解析式为,与轴交点坐标为. ………(9分)
①如图4.2所示,当时,与重叠部分为四边形.
设与轴交于点,与轴交于点,与交于点,连结.
由,得 ,∴.……………(10分)
∴
. ∴的最大值为.
②如图所示,当时,与重叠部分为直角三角形.
设与轴交于点, 与交于点.则,
,.
∴.
∴当时,的最大值为.
综上所述,在此运动过程中与重叠部分面积的最大值为.
3. (1)依题意,得 解之,得∴抛物线解析式为.
∵对称轴为x=-1,且抛物线经过A(1,0),∴B(-3,0).
把B(-3,0)、C(0,3)分别直线y=mx+n,得
PC2=(-1)2+(t-3)2=t2-6t+10.
①若B为直角顶点,则BC2+PB2=PC2,即18+4+t2=t2-6t+10. 解之,得t=-2.
②若C为直角顶点,则BC2+PC2=PB2,即18+t2-6t+10=4+t2.解之,得t=4.
③若P为直角顶点,则PB2+PC2=BC2,即 4+t2+t2-6t+10=18.解之,得t1=,t2=.
4. 解答:(1)抛物线经过点A(-2,0),D(6,-8),
解得抛物线的函数表达式为
,抛物线的对称轴为直线.又抛物线与x轴交于A,B两点,点A
的坐标为(-2,0).点B的坐标为(8,0)设直线l的函数表达式为.点D(6,-8)在直线l上,
6k=-8,解得.直线l的函数表达式为点E为直线l和抛物线对称轴的交点.点E的横坐标为3,纵坐标为,即点E的坐标为(3,-4)
(2)抛物线上存在点F,使≌.点F的坐标为()或().
(3)解法一:分两种情况:
①当时,是等腰三角形.
点E的坐标为(3,-4),,过点E作直线ME//PB,
交y轴于点M,交x轴于点H,则,
点M的坐标为(0,-5).
设直线ME的表达式为,,解得,ME的函数表达式为,令y=0,得,解得x=15,点H的坐标为(15,0)
又MH//PB,,即,
②当时,是等腰三角形.
当x=0时,,点C的坐标为(0,-8),
,OE=CE,,又因为,,
,CE//PB设直线CE交x轴于点N,其函数表达式为,,解得,CE的函数表达式为,令y=0,得,,点N的坐标为(6,0)
CN//PB,,,解得
综上所述,当m的值为或时,是等腰三角形.
解法二:当x=0时, ,点C的坐标为(0,-8),点E的坐标为
(3,-4),,,OE=CE,,设抛物线的对称轴交直线PB于点M,交x轴于点H.分两种情况:
① 当时,是等腰三角形.
,,CE//PB
又HM//y轴,四边形PMEC是平行四边形,,
,HM//y轴,
∽,
②当时,是等腰三角形.
轴,∽,,
,,
轴,∽,
当m的值为或时,是等腰三角形.
5. 解:(1)∵抛物线y=ax2+bx﹣5与y轴交于点C,∴C(0,﹣5),∴OC=5.
∵OC=5OB,∴OB=1,又点B在x轴的负半轴上,∴B(﹣1,0).
∵抛物线经过点A(4,﹣5)和点B(﹣1,0),
∴,解得,∴这条抛物线的表达式为y=x2﹣4x﹣5.
(2)由y=x2﹣4x﹣5,得顶点D的坐标为(2,﹣9).连接AC,
∵点A的坐标是(4,﹣5),点C的坐标是(0,﹣5),
又S△ABC=×4×5=10,S△ACD=×4×4=8,
∴S四边形ABCD=S△ABC+S△ACD=18.
(3)过点C作CH⊥AB,垂足为点H.∵S△ABC=×AB×CH=10,AB=5,
∴CH=2,
在RT△BCH中,∠BHC=90°,BC=,BH==3,
∴tan∠CBH==.∵在RT△BOE中,∠BOE=90°,tan∠BEO=,
∵∠BEO=∠ABC,∴,得EO=,∴点E的坐标为(0,).
6. 解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).
∴设抛物线的解析式为y=a(x+3)(x﹣9),∵C(0,4)在抛物线上,∴4=﹣27a,
∴a=﹣,∴设抛物线的解析式为y=﹣(x+3)(x﹣9)=﹣x2+x+4,
∵CD垂直于y轴,C(0,4)∴﹣x2+x+4=4,∴x=6,∵D(6,4),
(2)如图1,∵点F是抛物线y=﹣x2+x+4的顶点,
∴F(3,),∴FH=,∵GH∥A1O1,∴,
∴,∴GH=1,
∵Rt△A1O1F与矩形OCDE重叠部分是梯形A1O1HG,
∴S重叠部分=S△A1O1F﹣S△FGH=A1O1×O1F﹣GH×FH=×3×4﹣×1×=.
(3)①当0<t≤3时,如图2,∵C2O2∥DE,∴,
∴,∴O2G=t,∴S=S△OO2G=OO2×O2G=t×t=t2,
②当3<t≤6时,如图3,∵C2H∥OC,∴,
∴,∴C2H=(6﹣t),∴S=S四边形A2O2HG=S△A2O2C2﹣S△C2GH
=OA×OC﹣C2H×(t﹣3)=×3×4﹣×(6﹣t)(t﹣3)
=t2﹣3t+12
∴当0<t≤3时,S=t2,当3<t≤6时,S=t2﹣3t+12.
7. 解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),
∴设抛物线解析式为y=a(x+2)(x﹣4),∴﹣8a=4,∴a=﹣,
∴抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;
(2)如图1,①点E在直线CD上方的抛物线上,记E′,
连接CE′,过E′作E′F′⊥CD,垂足为F′,由(1)知,OC=4,
∵∠ACO=∠E′CF′,∴tan∠ACO=tan∠E′CF′,
∴=,设线段E′F′=h,则CF′=2h,∴点E′(2h,h+4)
∵点E′在抛物线上,∴﹣(2h)2+2h+4=h+4,
∴h=0(舍)h=∴E′(1,),
②点E在直线CD下方的抛物线上,记E,同①的方法得,E(3,),点E的坐标为(1,),(3,)
(3)①CM为菱形的边,如图2,
在第一象限内取点P′,过点P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC,
交y轴于M′,∴四边形CM′P′N′是平行四边形,∵四边形CM′P′N′是菱形,
∴P′M′=P′N′,过点P′作P′Q′⊥y轴,垂足为Q′,∵OC=OB,∠BOC=90°,
∴∠OCB=45°,∴∠P′M′C=45°,设点P′(m,﹣ m2+m+4),
在Rt△P′M′Q′中,P′Q′=m,P′M′=m,∵B(4,0),C(0,4),
∴直线BC的解析式为y=﹣x+4,∵P′N′∥y轴,∴N′(m,﹣m+4),
∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,∴m=﹣m2+2m,∴m=0(舍)或m=4﹣2,
菱形CM′P′N′的边长为(4﹣2)=4﹣4.
②CM为菱形的对角线,如图3,
在第一象限内抛物线上取点P,过点P作PM∥BC,
交y轴于点M,连接CP,过点M作MN∥CP,交BC于N,
∴四边形CPMN是平行四边形,连接PN交CM于点Q,
∵四边形CPMN是菱形,∴PQ⊥CM,∠PCQ=∠NCQ,∵∠OCB=45°,
∴∠NCQ=45°,∴∠PCQ=45°,∴∠CPQ=∠PCQ=45°,∴PQ=CQ,
设点P(n,﹣ n2+n+4),∴CQ=n,OQ=n+2,∴n+4=﹣n2+n+4,∴n=0(舍),
∴此种情况不存在.∴菱形的边长为4﹣4.
8. 解:(1)把A(﹣1,1),B(2,2)代入y=ax2+bx得:,解得,
故抛物线的函数表达式为y=x2﹣x,∵BC∥x轴,设C(x0,2).∴x02﹣x0=2,解得:x0=﹣或x0=2,
∵x0<0 ∴C(﹣,2);
(2)设△BCM边BC上的高为h,∵BC=, ∴S△BCM=h=, ∴h=2,点M即为抛物线上到BC的距离为2的点,∴M的纵坐标为0或4,令y=x2﹣x=0, 解得:x1=0,x2=,∴M1(0,0),M2(,0),令y=x2﹣x=4,
解得:x3=,x4=,∴M3(,0),M4(,4),
综上所述:M点的坐标为:(0,0),(,0),(,0),(,4);
(3)∵A(﹣1,1),B(2,2),C(﹣,2),D(0,2), ∴OB=2,OA=,OC=,
∴∠AOD=∠BOD=45°,tan∠COD=, ①如图1,当△AOC∽△BON时,,∠AOC=∠BON,
∴ON=2OC=5,过N作NE⊥x轴于E, ∵∠COD=45°﹣∠AOC=45°﹣∠BON=∠NOE,
在Rt△NOE中,tan∠NOE=tan∠COD=, ∴OE=4,NE=3, ∴N(4,3)同理可得N(3,4);
②如图2,当△AOC∽△OBN时,,∠AOC=∠OBN, ∴BN=2OC=5,
过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F, ∴NF⊥BF,
∵∠COD=45°﹣∠AOC=45°﹣∠OBN=∠NBF,∴tan∠NBF=tan∠COD=, ∴BF=4,NF=3,
∴N(﹣1,﹣2),同理N(﹣2,﹣1),
综上所述:使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标是(4,3),(3,4),(﹣1,﹣2),(﹣2,﹣1).