- 414.20 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考数学压轴题100题精选(21-30题)答案
【021】解:(1); … ………………………………3分
(2)①EF∥AB. ……………………………………4分
证明:如图,由题意可得A(–4,0),B(0,3),, .
∴PA=3,PE=,PB=4,PF=.
∴,
∴. ………………………… 6分
又∵∠APB=∠EPF.
∴△APB ∽△EPF,∴∠PAB=∠PEF.
∴EF∥AB. …………………………… 7分
②S2没有最小值,理由如下:
过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q.
由上知M(0,),N(,0),Q(,). ……………… 8分
而S△EFQ= S△PEF,∴S2=S△PEF-S△OEF=S△EFQ-S△OEF=S△EOM+S△FON+S矩形OMQN
==
=. ………………………… 10分
当时,S2的值随k2的增大而增大,而0<k2<12. …………… 11分
∴0<S2<24,s2没有最小值. …………………………… 12分
说明:1.证明AB∥EF时,还可利用以下三种方法.方法一:分别求出经过A、B两点和经过E、F两点的直线解析式,利用这两个解析式中x的系数相等来证明AB∥EF;方法二:利用=来证明AB∥EF;方法三:连接AF、BE,利用S△AEF=S△BFE得到点A、点B到直线EF的距离相等,再由A、B两点在直线EF同侧可得到AB∥EF.
2.求S2的值时,还可进行如下变形:
S2= S△PEF-S△OEF=S△PEF-(S四边形PEOF-S△PEF)=2 S△PEF-S四边形PEOF,再利用第(1)题中的结论.
【022】解:(1)设抛物线的解析式为:y=a(x-m+2)(x-m-2)=a(x-m)2-4a.……2分
∵AC⊥BC,由抛物线的对称性可知:△ACB是等腰直角三角形,又AB=4,
∴C(m,-2)代入得a=.∴解析式为:y=(x-m)2-2.………………………5分
(亦可求C点,设顶点式)
(2)∵m为小于零的常数,∴只需将抛物线向右平移-m个单位,再向上平移2个单位,可以使抛物线y=(x-m)2-2顶点在坐标原点.……………………………………7分
(3)由(1)得D(0,m2-2),设存在实数m,使得△BOD为等腰三角形.
∵△BOD为直角三角形,∴只能OD=OB.……………………………………………9分
∴m2-2=|m+2|,当m+2>0时,解得m=4或m=-2(舍).
当m+2<0时,解得m=0(舍)或m=-2(舍);
当m+2=0时,即m=-2时,B、O、D三点重合(不合题意,舍)
综上所述:存在实数m=4,使得△BOD为等腰三角形.……………………………12分
A
D
C
B
P
M
Q
60°
【023】(1)证明:∵是等边三角形
∴
∵是中点 ∴ ∵
∴
∴ ∴ ∴梯形是等腰梯形.
(2)解:在等边中,
∴
∴∴ ∴ 5分
∵ ∴ 6分
∴ ∴ 7分
(3)解:①当时,则有
则四边形和四边形均为平行四边形∴
当时,则有 ,
则四边形和四边形均为平行四边形 ∴
∴当或时,以P、M和A、B、C、 D中的两个点为顶点的四边形是平行四边形.此时平行四边形有4个.
为直角三角形 ∵ ∴当取最小值时,
∴是的中点,而∴∴
【024】(1)由可知,,又△ABC为等腰直角三角形,
∴,,所以点A的坐标是().
(2)∵ ∴,则点的坐标是().
又抛物线顶点为,且过点、,所以可设抛物线的解析式为:,得:
解得 ∴抛物线的解析式为 ………7分
(3)过点作于点,过点作于点,设点的坐标是,则,.
∵ ∴∽ ∴ 即,得 ∵ ∴∽ ∴ 即,得 又∵
∴
即为定值8.
【025】解:(1)设点M的横坐标为x,则点M的纵坐标为-x+4(00,-x+4>0);
则:MC=∣-x+4∣=-x+4,MD=∣x∣=x;
∴C四边形OCMD=2(MC+MD)=2(-x+4+x)=8
∴当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8;
(2)根据题意得:S四边形OCMD=MC·MD=(-x+4)· x=-x2+4x=-(x-2)2+4
∴四边形OCMD的面积是关于点M的横坐标x(0