- 834.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
★★1、(2010北京)在平面直角坐标系xOy中,抛物线y= -x2+x+m2-3m+2
与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上。
(1)求点B的坐标;
(2)点P在线段OA上,从O点出发向点运动,过P点作x轴的垂线,与直线OB交于点E。延长PE到点D,使得ED=PE,以PD为斜边在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动)
j 当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;
k 若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一 点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。过Q点作x轴的垂线,与直线AB交于点F。延长QF 到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q 点运动时,M点,N点也随之运动)。若P点运动到t秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t的值。
x
y
O
1
1
O
A
B
C
D
E
P
y
x
图1
解:(1)∵拋物线y= -x2+x+m2-3m+2经过原点,∴m2-3m+2=0,解得m1=1,m2=2,由题意知m¹1,∴m=2,
∴拋物线的解析式为y= -x2+x,
∵点B(2,n)在拋物线y= -x2+x上,
∴n=4,∴B点的坐标为(2,4)。
(2)j 设直线OB的解析式为y=k1x,求得直线OB的解析式为 y=2x,∵A点是拋物线与x轴的一个交点,可求得A点的坐标为(10,0),设P点的坐标为(a,0),则E点的坐标为(a,2a),根据题意作等腰直角三角形PCD,如图1。可求得点C的坐标为(3a,2a),由C点在拋物线上,得2a= -´(3a)2+´3a,即a2-a=0,解得a1=,a2=0(舍去),∴OP=。
k 依题意作等腰直角三角形QMN,设直线AB的解析式为y=k2x+b,由点A(10,0),
点B(2,4),求得直线AB的解析式为y= -x+5,当P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:
第一种情况:CD与NQ在同一条直线上。
如图2所示。可证△DPQ为等腰直角三角形。此时OP、DP、AQ的长可依次表示为t、4t、2t个单位。∴PQ=DP=4t,∴t+4t+2t=10,∴t=。
第二种情况:PC与MN在同一条直线上。
如图3所示。可证△PQM为等腰直角三角形。此时OP、AQ的长可依次表示为t、2t个单位。∴OQ=10-2t,∵F点在直线AB上,∴FQ=t,∴MQ=2t,∴PQ=MQ=CQ=2t,
∴t+2t+2t=10,∴t=2。
第三种情况:点P、Q重合时,PD、QM在同一条直线上,
如图4所示。此时OP、AQ的长可依次表示为t、2t个单位。∴t+2t=10,
图4
y
x
B
O
Q(P)
N
C
D
M
E
F
∴t=。综上,符合题意的t值分别为,2, 。
x
y
O
A
M
(C)
B
(E)
D
P
Q
F
N
图3
E
x
O
A
B
C
y
P
M
Q
N
F
D
图2
★★2、(2010北京)问题:已知△ABC中,ÐBAC=2ÐACB,点D是△ABC内的一点,且AD=CD,BD=BA。探究ÐDBC与ÐABC度数的比值。
请你完成下列探究过程:
先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明。
(1) 当ÐBAC=90°时,依问题中的条件补全右图。观察图形,AB与AC的数量关系为 ; 当推出ÐDAC=15°时,可进一步推出ÐDBC的度数为 ;可得到ÐDBC与ÐABC度数的比值为 ;
(2) 当ÐBAC¹90°时,请你画出图形,研究ÐDBC与ÐABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明。
A
C
B
解:(1) 相等;15°;1:3。
(2) 猜想:ÐDBC与ÐABC度数的比值与(1)中结论相同。
证明:如图2,作ÐKCA=ÐBAC,过B点作BK//AC交CK于点K,
连结DK。∵ÐBAC¹90°,∴四边形ABKC是等腰梯形,
∴CK=AB,∵DC=DA,∴ÐDCA=ÐDAC,∵ÐKCA=ÐBAC,
B
A
C
D
K
1
2
3
4
5
6
图2
∴ÐKCD=Ð3,∴△KCD@△BAD,∴Ð2=Ð4,KD=BD,
∴KD=BD=BA=KC。∵BK//AC,∴ÐACB=Ð6,
∵ÐKCA=2ÐACB,∴Ð5=ÐACB,∴Ð5=Ð6,∴KC=KB,
∴KD=BD=KB,∴ÐKBD=60°,∵ÐACB=Ð6=60°-Ð1,
∴ÐBAC=2ÐACB=120°-2Ð1,
∵Ð1+(60°-Ð1)+(120°-2Ð1)+Ð2=180°,∴Ð2=2Ð1,
∴ÐDBC与ÐABC度数的比值为1:3。
★★3、(2010郴州)如图(1),抛物线与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线与抛物线交于点B、C.
(1)求点A的坐标;
(2)当b=0时(如图(2)),与的面积大小关系如何?当时,上述关系还成立吗,为什么?
(3)是否存在这样的b,使得是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由.
第26题
图(1)
图(2)
解:(1)将x=0,代入抛物线解析式,得点A的坐标为(0,-4)
(2)当b=0时,直线为,由解得,
所以B、C的坐标分别为(-2,-2),(2,2)
,
所以(利用同底等高说明面积相等亦可)
当时,仍有成立. 理由如下
由,解得,
所以B、C的坐标分别为(-,-+b),(,+b),
作轴,轴,垂足分别为F、G,则,
而和是同底的两个三角形,
所以.
(3)存在这样的b.
因为
所以,所以,即E为BC的中点
所以当OE=CE时,为直角三角形,因为
所以 ,而
所以,解得,
所以当b=4或-2时,ΔOBC为直角三角形.
★★4、(2010滨州)如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线恰好经过轴上A、B两点.
(1)求A、B、C三点的坐标;
(2)求过A、B、C三点的抛物线的解析式;
(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位?
解:
解:①由抛物线的对称性可知AM=BM
在Rt△AOD和Rt△BMC中,∵OD=MC,AD=BC,
∴△AOD≌△BMC.∴OA=MB=MA.
设菱形的边长为2m,在Rt△AOD中,
,解得m=1.∴DC=2,OA=1,OB=3.
∴A、B、C三点的坐标分别为(1,0)、(3,0)、(2,)
②设抛物线的解析式为y=(—2)2+
代入A点坐标可得=—
抛物线的解析式为y=—(—2)2+
③设抛物线的解析式为y=—(一2)2+k,代入D(0,)可得k=5
所以平移后的抛物线的解析式为y=—(一2)2+5,平移了5一=4个单位.
★★5、(2010长沙)已知:二次函数的图象经过点(1,0),一次函数图象经过原点和点(1,-b),其中且、为实数.
(1)求一次函数的表达式(用含b的式子表示);
(2)试说明:这两个函数的图象交于不同的两点;
(3)设(2)中的两个交点的横坐标分别为x1、x2,求| x1-x2 |的范围.
解:(1)∵一次函数过原点∴设一次函数的解析式为y=kx
∵一次函数过(1,-b) ∴y=-bx
(2)∵y=ax2+bx-2过(1,0)即a+b=2
由得 ①
∵△=
∴方程①有两个不相等的实数根∴方程组有两组不同的解
∴两函数有两个不同的交点.
(3)∵两交点的横坐标x1、x2分别是方程①的解
∴
∴=
或由求根公式得出。 ∵a>b>0,a+b=2 ∴2>a>1
令函数 ∵在1