• 277.00 KB
  • 2021-05-13 发布

中考复习几何探究性问题

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
几何探究题 ‎1、如图1,图2,图3,在中,分别以为边,向外作正三角形,正四边形,正五边形,相交于点.‎ ‎①如图1,求证:;‎ ‎②探究:如图1, ;‎ 如图2, ;‎ 如图3, .‎ ‎(2)如图4,已知:是以为边向外所作正边形的一组邻边;‎ 是以为边向外所作正边形的一组邻边.的延长相交于点.‎ ‎①猜想:如图4, (用含的式子表示);‎ ‎②根据图4证明你的猜想.‎ ‎2、请阅读下列材料:‎ 问题:如图1,在菱形和菱形中,点在同一条直线上,是线段的中点,连结.若,探究与的位置关系及的值.‎ 小聪同学的思路是:延长交于点,构造全等三角形,经过推理使问题得到解决.‎ D A B E F C P G 图1‎ D C G P A B E F 图2‎ 请你参考小聪同学的思路,探究并解决下列问题:‎ ‎(1)写出上面问题中线段与的位置关系及的值;‎ ‎(2)将图1中的菱形绕点顺时针旋转,使菱形的对角线恰好与菱形的边在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.‎ ‎(3)若图1中,将菱形绕点顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含的式子表示).‎ ‎3、如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.‎ ‎(1)求AD的长;‎ ‎(2)设CP=x,问当x为何值时△PDQ的面积达到最大,并求出最大值;‎ ‎(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.‎ ‎(备用图)‎ ‎4、已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:,请你探究:当点P分别在图(2)、图(3)中的位置时,又有怎样的数量关系?请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.‎ 答:对图(2)的探究结论为____________________________________.‎ ‎ 对图(3)的探究结论为_____________________________________.‎ ‎5、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.‎ ‎(1)直接写出点E、F的坐标;‎ ‎(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;‎ ‎(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.‎ ‎6、如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系: ‎ ‎(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;‎ ‎②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.‎ ‎(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka, CG=kb (ab,k0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.‎ ‎(3)在第(2)题图5中,连结、,且a=3,b=2,k=,求的值.‎ ‎7、正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F。如图1,当点P与点O重合时,显然有DF=CF.‎ ‎⑴如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE交CD于点E。‎ ‎ ①求证:DF=EF;‎ ‎ ②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论;‎ ‎⑵若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD于点E。请完成图3并判断⑴中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明)‎ O D C B A 图3‎ P 图2‎ O D C B A E F P F P(O)‎ D C B A 图1‎ ‎8、将一矩形纸片放在平面直角坐标系中,,,.动点从点出发以每秒1个单位长的速度沿向终点运动,运动秒时,动点从点出发以相等的速度沿向终点运动.当其中一点到达终点时,另一点也停止运动.设点的运动时间为(秒).‎ 图1‎ O P A x B D C Q y ‎(1)用含的代数式表示;‎ ‎(2)当时,如图1,将沿翻折,点恰好落在边上的点处,求点的坐标;‎ ‎9、(1)探究新知:如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD 的位置关系,并说明理由. ‎ ‎(2)结论应用: ‎ ‎① 如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F. 试证明:MN∥EF. ‎ ‎② 若①中的其他条件不变,只改变点M,N 的位置如图3所示,请判断 MN与EF是否平行.‎ x O y N M 图 2‎ E F x N x O y D M 图 3‎ N A B D C 图 1‎