• 3.58 MB
  • 2021-05-13 发布

高考数学概率与统计部分汇总

  • 30页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2010年高考数学试题分类汇编——概率与统计 ‎(2010陕西文数)4.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为,样本标准差分别为sA和sB,则 [B]‎ ‎(A) >,sA>sB ‎(B) <,sA>sB ‎(C) >,sA<sB ‎(D) <,sA<sB 解析:本题考查样本分析中两个特征数的作用 ‎<10<;A的取值波动程度显然大于B,所以sA>sB ‎(2010辽宁理数)(3)两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是 ‎ 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为 ‎(A) (B) (C) (D)‎ ‎【答案】B ‎【命题立意】本题考查了相互独立事件同时发生的概率,考查了有关概率的计算问题 ‎【解析】记两个零件中恰好有一个一等品的事件为A,则 P(A)=P(A1)+ P(A2)=‎ ‎(2010江西理数)11.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测。方法一:在10箱子中各任意抽查一枚;方法二:在5箱中各任意抽查两枚。国王用方法一、二能发现至少一枚劣币的概率分别为和,则 A. = B. < C. > D。以上三种情况都有可能 ‎【答案】B ‎【解析】考查不放回的抽球、重点考查二项分布的概率。本题是北师大版新课标的课堂作业,作为旧大纲的最后一年高考,本题给出一个强烈的导向信号。方法一:每箱的选中的概率为 ‎,总概率为;同理,方法二:每箱的选中的概率为,总事件的概率为,作差得<。‎ ‎(2010安徽文数)(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是 ‎(A) (A) (A) (A)‎ ‎10.C ‎【解析】正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件。两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于.‎ ‎【方法技巧】对于几何中的概率问题,关键是正确作出几何图形,分类得出基本事件数,然后得所求事件保护的基本事件数,进而利用概率公式求概率.‎ ‎(2010重庆文数)(5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为 ‎(A)7 (B)15 (C)25 (D)35‎ 解析:青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为 ‎(2010山东文数)(6)在某项体育比赛中,七位裁判为一选手打出的分数如下:‎ ‎ 90 89 90 95 93 94 93 ‎ ‎ 去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ‎(A)92 , 2 (B) 92 , 2.8‎ ‎(C) 93 , 2 (D) 93 , 2.8‎ 答案:B ‎(2010北京文数)⑶从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是 ‎ (A) (B) (C) (D)‎ 答案:D ‎(2010广东理数)8.为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同.记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。如果要实现所有不同的闪烁,那么需要的时间至少是( )‎ A、 1205秒 B.1200秒 C.1195秒 D.1190秒 ‎8.C.每次闪烁时间5秒,共5×120=600s,每两次闪烁之间的间隔为5s,共5×(120-1)=595s.总共就有600+595=1195s.[来源:高考资 ‎(2010广东理数)7.已知随机变量X服从正态分布N(3.1),且=0.6826,则p(X>4)=( )‎ A、0.1588 B、‎0.1587 C、0.1586 D0.1585‎ ‎7.B.=0.3413,[来源:高考资源网KS5U.COM]‎ ‎=0.5-0.3413=0.1587.[来源:高 ‎(2010四川文数)(4)一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是 ‎(A)12,24,15,9 (B)9,12,12,7 (C)8,15,12,5 (D)8,16,10,6‎ 解析:因为 ‎ 故各层中依次抽取的人数分别是,,,‎ 答案:D ‎(2010山东理数)(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有 ‎(A)36种 (B)42种 (C)48种 (D)54种 ‎【答案】B ‎(2010山东理数)‎ ‎(2010山东理数)‎ ‎1. (2010湖北理数)4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是‎3”‎为事件B,则事件A,B中至少有一件发生的概率是 A B C D ‎ ‎(2010湖北理数)6.将参加夏令营的600名学生编号为:001,002,……600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数一次为 A.26, 16, 8, B.25,17,8 ‎ C.25,16,9 D.24,17,9‎ ‎2010年高考数学试题分类汇编——概率与统计 ‎(2010上海文数)10. 从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率 为 (结果用最简分数表示)。‎ 解析:考查等可能事件概率 ‎“抽出的2张均为红桃”的概率为 ‎(2010湖南文数)11.在区间[-1,2]上随即取一个数x,则x∈[0,1]的概率为 。‎ ‎【答案】‎ ‎【命题意图】本题考察几何概率,属容易题。‎ ‎(2010辽宁文数)(13)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为 。 ‎ 解析:填 题中三张卡片随机地排成一行,共有三种情况:,概率为:K^S*5U.C#‎ ‎(2010安徽文数)(14)某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .‎ ‎14.‎ ‎【解析】该地拥有3套或3套以上住房的家庭可以估计有:户,所以所占比例的合理估计是.‎ ‎【方法总结】本题分层抽样问题,首先根据拥有3套或3套以上住房的家庭所占的比例,得出100 000户,居民中拥有3套或3套以上住房的户数,它除以100 000得到的值,为该地拥有3套或3套以上住房的家庭所占比例的合理估计.‎ ‎(2010重庆文数)(14)加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为、、,且各道工序互不影响,则加工出来的零件的次品率为____________ .‎ 解析:加工出来的零件的次品的对立事件为零件是正品,由对立事件公式得 加工出来的零件的次品率 ‎(2010浙江文数)(11)在如图所示的茎叶图中,甲、乙两组数据的中位数分别是 、 ‎ 答案:45 46‎ ‎(2010重庆理数)(13)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为 ‎,则该队员每次罚球的命中率为____________.‎ 解析:由得 ‎(2010北京理数)(11)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。由图中数据可知a= 。若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为 。‎ 答案:0.030 3‎ ‎(2010福建文数)14. 将容量为n的样本中的数据分成6组,绘制频率分布直方图。若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于 。‎ ‎【答案】60‎ ‎【解析】设第一组至第六组数据的频率分别为,则,解得,所以前三组数据的频率分别是,‎ 故前三组数据的频数之和等于=27,解得n=60。K^S*5U.C#O ‎【命题意图】本小题考查频率分布直方图的基础知识,熟练基本公式是解答好本题的关键。‎ ‎(2010湖北文数)13.一个病人服用某种新药后被治愈的概率为0.9.则服用这咱新药的4个病人中至少3人被治愈的概率为_______(用数字作答)。‎ ‎【答案】0.9744‎ ‎【解析】分情况讨论:若共有3人被治愈,则;‎ 若共有4人被治愈,则,故至少有3人被治愈概率 ‎(2010湖南理数)11.在区间上随机取一个数x,则的概率为 ‎ ‎(2010湖南理数)9.已知一种材料的最佳入量在‎110g到‎210g之间。若用0.618法安排实验,则第一次试点的加入量可以是 g ‎(2010安徽理数)15、甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号)。‎ ‎①; ②; ③事件与事件相互独立;‎ ‎④是两两互斥的事件; ⑤的值不能确定,因为它与中哪一个发生有关 ‎15.②④‎ ‎【解析】易见是两两互斥的事件,而 ‎。‎ ‎【方法总结】本题是概率的综合问题,掌握基本概念,及条件概率的基本运算是解决问题的关键.本题在是两两互斥的事件,把事件B的概率进行转化,可知事件B的概率是确定的.‎ ‎2. (2010湖北理数)14.某射手射击所得环数的分布列如下:‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ P x ‎0.1‎ ‎0.3‎ y 已知的期望E=8.9,则y的值为 .‎ ‎14.【答案】0.4‎ ‎【解析】由表格可知:‎ 联合解得.‎ ‎(2010福建理数)13.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 。‎ ‎【答案】0.128‎ ‎【解析】由题意知,所求概率为。‎ ‎【命题意图】本题考查独立重复试验的概率,考查基础知识的同时,进一步考查同学们的分析问题、解决问题的能力。K^S*5U.C#O%‎ ‎3. (2010江苏卷)3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.‎ ‎[解析]考查古典概型知识。‎ ‎4 . (2010江苏卷)4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于‎20mm。‎ ‎[解析]考查频率分布直方图的知识。‎ ‎100×(0.001+0.001+0.004)×5=30‎ ‎ 2010年高考数学试题分类汇编——概率与统计 ‎(2010浙江理数)19.(本题满分l4分)如图,一个小球从M处投入,通过管道自上而下落A或B或C。已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.‎ ‎(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量为获得k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望;‎ ‎(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求.‎ 解析:本题主要考察随机事件的概率和随机变量的分布列、数学期望、二项分布等概念,同时考查抽象概括、运算求解能力和应用意识。‎ ‎ (Ⅰ)解:由题意得ξ的分布列为 ξ ‎50%‎ ‎70%‎ ‎90%‎ p 则Εξ=×50%+×70%+90%=.‎ ‎(Ⅱ)解:由(Ⅰ)可知,获得1等奖或2等奖的概率为+=.‎ 由题意得η~(3,)‎ 则P(η=2)=()2(1-)=.‎ ‎(2010湖南文数)17. (本小题满分12分)‎ 为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)‎ (I) 求x,y ;‎ (II) 若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率。‎ ‎(2010全国卷2理数)(20)(本小题满分12分)‎ ‎ 如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9.电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999. ‎ ‎(Ⅰ)求p;‎ ‎ (Ⅱ)求电流能在M与N之间通过的概率;‎ ‎ (Ⅲ)表示T1,T2,T3,T4中能通过电流的元件个数,求的期望.‎ ‎ ‎ ‎【命题意图】本试题主要考查独立事件的概率、对立事件的概率、互斥事件的概率及数学期望,考查分类讨论的思想方法及考生分析问题、解决问题的能力.‎ ‎【参考答案】‎ ‎【点评】概率与统计也是每年的必考题,但对考试难度有逐年加强的趋势,已经由原来解答题的前3题的位置逐渐后移到第20题的位置,对考生分析问题的能力要求有所加强,这应引起高度重视.‎ ‎(2010陕西文数)19 (本小题满分12分)‎ 为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:‎ ‎()估计该校男生的人数;‎ ‎()估计该校学生身高在170~‎185cm之间的概率;‎ ‎()从样本中身高在180~‎190cm之间的男生中任选2人,求至少有1人身高在185~‎190cm之间的概率。‎ 解 ()样本中男生人数为40 ,由分层出样比例为10%估计全校男生人数为400。‎ ‎()有统计图知,样本中身高在170~‎185cm之间的学生有14+13+4+3+1=35人,样本容量为70 ,所以样本中学生身高在170~‎185cm之间的频率故有f估计该校学生身高在170~‎180cm之间的概率 ‎()样本中身高在180~‎185cm之间的男生有4人,设其编号为 ‎ 样本中身高在185~‎190cm之间的男生有2人,设其编号为 从上述6人中任取2人的树状图为:‎ 故从样本中身高在180~‎190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185~‎190cm之间的可能结果数为9,因此,所求概率 ‎(2010辽宁文数)(18)(本小题满分12分)‎ 为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做实验,将这200只家兔随机 地分成两组。每组100只,其中一组注射药物A,另一组注射药物B。下表1和表2分别是注射药物A和药物B后的实验结果。(疱疹面积单位:)‎ ‎(Ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;‎ ‎(Ⅱ)完成下面列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”。 K^S*5U.C#‎ 附: ‎ 解:‎ ‎ (Ⅰ)‎ 图1注射药物A后皮肤疱疹面积的频率分布直方图 图2注射药物B后皮肤疱疹面积的频率分布直方图 ‎ 可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数。‎ ‎ (Ⅱ)表3‎ 疱疹面积小于 疱疹面积不小于 合计 注射药物 注射药物 合计 ‎ ‎ ‎ 由于,所以有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.‎ ‎(2010辽宁理数)(18)(本小题满分12分)‎ ‎ 为了比较注射A, B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B。‎ ‎ (Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;‎ ‎(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)‎ 表1:注射药物A后皮肤疱疹面积的频数分布表 ‎(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;‎ ‎(ⅱ)完成下面2×2‎ 列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.‎ 表3: ‎ 解:‎ ‎(Ⅰ)甲、乙两只家兔分在不同组的概率为 ‎ ……4分 ‎(Ⅱ)(i)‎ 图Ⅰ注射药物A后皮肤疱疹面积的频率分布直方图 图Ⅱ注射药物B后皮肤疱疹面积的频率分布直方图 可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数。 ……8分 ‎(ii)表3:‎ 由于K2>10.828,所以有99.9%的把握认为“注射药物A后的疱疹面积于注射药物B后的疱疹面积有差异”。 ……12分 ‎(2010全国卷2文数)(20)(本小题满分12分)‎ ‎ ‎ ‎ 如图,由M到N的电路中有4个元件,分别标为T,T,T,T,电源能通过T,T,T的概率都是P,电源能通过T的概率是0.9,电源能否通过各元件相互独立。已知T,T,T中至少有一个能通过电流的概率为0.999。‎ ‎(Ⅰ)求P;‎ ‎(Ⅱ)求电流能在M与N之间通过的概率。‎ ‎【解析】本题考查了概率中的互斥事件、对立事件及独立事件的概率,‎ ‎(1)设出基本事件,将要求事件用基本事件的来表示,将T1,T2,T3至少有一个能通过电流用基本事件表示并求出概率即可求得P。‎ ‎(2)将MN之间能通过电流用基本事件表示出来,由互斥事件与独立事件的概率求得。‎ ‎(2010江西理数)18. (本小题满分高☆考♂资♀源*网12分)‎ 某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门。再次到达智能门时,系统会随机打开一个你未到过的通道,直至走完迷宫为止。令表示走出迷宫所需的时间。‎ (1) 求的分布列;‎ (2) 求的数学期望。‎ ‎【解析】考查数学知识的实际背景,重点考查相互独立事件的概率乘法公式计算事件的概率、随机事件的数学特征和对思维能力、运算能力、实践能力的考查。‎ (1) 必须要走到1号门才能走出,可能的取值为1,3,4,6‎ ‎,,,‎ ‎1‎ ‎3‎ ‎4‎ ‎6‎ 分布列为:‎ ‎(2)小时 ‎(2010安徽文数)18、(本小题满分13分)‎ ‎ 某市‎2010年4月1日—‎4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):‎ ‎ 61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,‎ ‎ 77,86,81,83,82,82,64,79,86,85,75,71,49,45,‎ ‎(Ⅰ) 完成频率分布表;‎ ‎(Ⅱ)作出频率分布直方图;‎ ‎(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150‎ 之间时,为轻微污染;在151~200之间时,为轻度污染。‎ 请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.‎ ‎【命题意图】本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识. ‎ ‎【解题指导】(1)首先根据题目中的数据完成频率分布表,作出频率分布直方图,根据污染指数,确定空气质量为优、良、轻微污染、轻度污染的天数。‎ ‎(Ⅲ)答对下述两条中的一条即可:‎ (1) 该市一个月中空气污染指数有2天处于优的水平,占当月天数的,有26天处于良的水平,占当月天数的,处于优或良的天数共有28天,占当月天数的。说明该市空气质量基本良好。‎ (2) 轻微污染有2天,占当月天数的。污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的,超过50%,说明该市空气质量有待进一步改善。‎ ‎【规律总结】在频率分布表中,频数的和等于样本容量,频率的和等于1,每一小组的频率等于这一组的频数除以样本容量.频率分布直方图中,小矩形的高等于每一组的频率/组距,它们与频数成正比,小矩形的面积等于这一组的频率.对于开放性问题的回答,要选择适当的数据特征进行考察,根据数据特征分析得出实际问题的结论.‎ ‎(2010重庆文数)(17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分. )‎ 在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求:‎ ‎(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;‎ ‎(Ⅱ)甲、乙两单位的演出序号不相邻的概率.‎ ‎(2010重庆理数)(17)(本小题满分13分,(I)小问5分,(II)小问8分)‎ 在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……6),求:‎ ‎(I)甲、乙两单位的演出序号至少有一个为奇数的概率;‎ ‎(II)甲、乙两单位之间的演出单位个数的分布列与期望。‎ ‎(2010山东文数)(19)(本小题满分12分)‎ ‎ 一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.‎ ‎(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;‎ ‎(Ⅱ)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.‎ ‎(2010北京理数)(17)(本小题共13分) www.@ks@5u.com 某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为 ‎,第二、第三门课程取得优秀成绩的概率分别为,(>),且不同课程是否取得优秀成绩相互独立。记ξ为该生取得优秀成绩的课程数,其分布列为 ξ ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;‎ ‎(Ⅱ)求,的值;‎ ‎(Ⅲ)求数学期望ξ。‎ 解:事件表示“该生第门课程取得优秀成绩”,=1,2,3,由题意知 ‎ ,,‎ ‎(I)由于事件“该生至少有1门课程取得优秀成绩”与事件“”是对立的,所以该生至少有1门课程取得优秀成绩的概率是 ‎ ,‎ ‎(II)由题意知 ‎ ‎ ‎ ‎ 整理得 ,‎ 由,可得,.‎ ‎(III)由题意知 ‎ =‎ ‎ ‎ ‎ ‎ ‎ =‎ ‎ ‎ ‎ =‎ ‎(2010四川理数)(17)(本小题满分12分)w_w w. k#s5_u.c o*m 某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。‎ ‎(Ⅰ)求甲中奖且乙、丙都没有中奖的概率;‎ ‎(Ⅱ)求中奖人数ξ的分布列及数学期望Eξ.‎ 解:(1)设甲、乙、丙中奖的事件分别为A、B、C,那么w_w w. k#s5_u.c o*m P(A)=P(B)=P(C)=‎ P()=P(A)P()P()=‎ 答:甲中奖且乙、丙都没有中奖的概率为……………………………………6分 ‎(2)ξ的可能值为0,1,2,3‎ P(ξ=k)=(k=0,1,2,3)‎ 所以中奖人数ξ的分布列为w_w w. k#s5_u.c o*m ξ ‎0‎ ‎1‎ ‎2‎ ‎3‎ P Eξ=0×+1×+2×+3×=………………………………………………12分 ‎(2010天津文数)(18)(本小题满分12分)‎ 有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:‎ 其中直径在区间[1.48,1.52]内的零件为一等品。‎ ‎(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;‎ ‎(Ⅱ)从一等品零件中,随机抽取2个.‎ ‎ (ⅰ)用零件的编号列出所有可能的抽取结果;‎ ‎ (ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分 ‎ 【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”‎ 为事件A,则P(A)==.‎ ‎ (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,‎ ‎,,,共有15种.‎ ‎ (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,,共有6种.‎ ‎ 所以P(B)=.‎ ‎(2010天津理数)(18).(本小题满分12分)‎ 某射手每次射击击中目标的概率是,且各次射击的结果互不影响。‎ ‎(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率 ‎(Ⅱ)假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;‎ ‎(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列。‎ ‎【解析】本小题主要考查二项分布及其概率计算公式、离散型随机变量的分布列、互斥事件和相互独立事件等基础知识,考查运用概率知识解决实际问题的能力,满分12分。‎ ‎(1)解:设为射手在5次射击中击中目标的次数,则~.在5次射击中,恰有2次击中目标的概率 ‎(Ⅱ)解:设“第次射击击中目标”为事件;“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件,则 ‎ ‎ ‎ =‎ ‎ =‎ ‎(Ⅲ)解:由题意可知,的所有可能取值为 ‎ ‎ ‎ =‎ 所以的分布列是 ‎(2010广东理数)17.(本小题满分12分) [来源:高考资源网KS5U.COM]‎ 某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490,,(495,,……(510,,由此得到样本的频率分布直方图,如图4所示.‎ ‎ (1)根据频率分布直方图,求重量超过‎505克 的产品数量.‎ ‎ (2)在上述抽取的40件产品中任取2件,设Y为重量超过‎505克的产品数量,求Y的分布列.‎ ‎ (3)从流水线上任取5件产品,求恰有2件产品合格的重量超过‎505克的概率.‎ ‎(2010广东文数)17.(本小题满分12分)‎ 某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:‎ 文艺节目 新闻节目 总计 ‎20至40岁 ‎40‎ ‎18‎ ‎58‎ 大于40岁 ‎15‎ ‎27‎ ‎42‎ 总计 ‎55‎ ‎45‎ ‎100‎ ‎(2010福建文数)18.(本小题满分12分)‎ ‎ 设平顶向量= ( m , 1), = ( 2 , n ),其中 m, n {1,2,3,4}.‎ ‎ (I)请列出有序数组( m,n )的所有可能结果;‎ ‎ (II)记“使得(-)成立的( m,n )”为事件A,求事件A发生的概率。‎ ‎(2010全国卷1理数)(18)(本小题满分12分)‎ ‎ 投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,‎ 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录 用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.‎ 各专家独立评审.‎ ‎ (I)求投到该杂志的1篇稿件被录用的概率;‎ ‎ (II)记表示投到该杂志的4篇稿件中被录用的篇数,求的分布列及期望.‎ ‎ ‎ ‎(2010四川文数)(17)(本小题满分12分)‎ 某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。‎ ‎(Ⅰ)求三位同学都没有中奖的概率;w_w w. k#s5_u.c o*m ‎(Ⅱ)求三位同学中至少有两位没有中奖的概率.‎ ‎(2010湖北文数)17.(本小题满分12分)‎ ‎ 为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示)‎ ‎(Ⅰ)在答题卡上的表格中填写相应的频率;‎ ‎(Ⅱ)估计数据落在(1.15,1.30)中的概率为多少;‎ ‎(Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数。‎ ‎(2010山东理数)‎ ‎=,‎ 所以的分布列为 ‎2‎ ‎3‎ ‎4‎ 数学期望=++4=。‎ ‎【命题意图】本题考查了相互独立事件同时发生的概率、考查了离散型随机变量的分布列以及数学期望的知识,考查了同学们利用所学知识解决实际问题的能力。‎ ‎(2010湖南理数)17.(本小题满分12分)‎ 图4是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图 ‎(Ⅰ)求直方图中x的值 ‎(II)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望。‎ ‎(2010福建理数)‎ ‎0‎ ‎1‎ ‎4‎ ‎9‎ P 所以=。‎ ‎(2010安徽理数)21、(本小题满分13分)‎ ‎ 品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这瓶酒,并重新按品质优劣为它们排序,这称为一轮测试。根据一轮测试中的两次排序的偏离程度的高低为其评为。‎ ‎ 现设,分别以表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令 ‎,‎ 则是对两次排序的偏离程度的一种描述。‎ ‎ (Ⅰ)写出的可能值集合;‎ ‎(Ⅱ)假设等可能地为1,2,3,4的各种排列,求的分布列;‎ ‎(Ⅲ)某品酒师在相继进行的三轮测试中,都有,‎ ‎(i)试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);‎ ‎(ii)你认为该品酒师的酒味鉴别功能如何?说明理由。‎ ‎(2010江苏卷)22.本小题满分10分)‎ 某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。‎ (1) 记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;‎ (2) 求生产4件甲产品所获得的利润不少于10万元的概率。‎ ‎[解析] 本题主要考查概率的有关知识,考查运算求解能力。满分10分。‎ 解:(1)由题设知,X的可能取值为10,5,2,-3,且 ‎ P(X=10)=0.8×0.9=0.72, P(X=5)=0.2×0.9=0.18,‎ ‎ P(X=2)=0.8×0.1=0.08, P(X=-3)=0.2×0.1=0.02。‎ ‎ 由此得X的分布列为:‎ X ‎10‎ ‎5‎ ‎2‎ ‎-3‎ P ‎0.72‎ ‎0.18‎ ‎0.08‎ ‎0.02‎ ‎(2)设生产的4件甲产品中一等品有件,则二等品有件。‎ ‎ 由题设知,解得,‎ ‎ 又,得,或。‎ 所求概率为 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192。‎