- 1.49 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高考数学大题突破训练(五)
1、已知函数,R。
(1)求的值;
(2)设,f(3)=,f(3+2)=.求sin( )的值
2、甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(I)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(II)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
3、如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.
(Ⅰ)求证:DE∥平面BCP;
(Ⅱ)求证:四边形DEFG为矩形;
(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.
4、设是公比为正数的等比数列,,。
(Ⅰ)求的通项公式;
(Ⅱ)设是首项为1,公差为2的等差数列,求数列的前项和。
5、设椭圆C: 过点(0,4),离心率为
(Ⅰ)求C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的中点坐标。
6、已知函数,.
(Ⅰ)设函数F(x)=18f(x)-x2[h(x)]2,求F(x)的单调区间与极值;
(Ⅱ)设,解关于x的方程;
(Ⅲ)设,证明:
高考数学大题突破训练(六)
1、已知等比数列中,,公比.
(I)为的前n项和,证明:
(II)设,求数列的通项公式.
2、本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为、;两小时以上且不超过三小时还车的概率分别为、;两人租车时间都不会超过四小时.
(Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率;
(Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率.
3、设函数
(1)求的最小正周期;
(II)若函数的图象按平移后得到函数的图象,求在上的最大值。
4、如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连接AP交棱CC1于D.
(Ⅰ)求证:PB1∥平面BDA1;
(Ⅱ)求二面角A-A1D-B的平面角的余弦值;
5、已知函数,其中.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,求的单调区间;
(Ⅲ)证明:对任意的在区间内均存在零点.
6、已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为。
⑴ 若与重合,求的焦点坐标;
⑵ 若,求的最大值与最小值;
⑶ 若的最小值为,求的取值范围。
高考数学大题突破训练(七)
1、在△中,内角的对边分别为,已知
(Ⅰ)求的值;
(Ⅱ)的值.
2、已知公差不为0的等差数列的首项为,且,,成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)对,试比较与的大小.
3、某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(I)没有人申请A片区房源的概率;
(II)每个片区的房源都有人申请的概率。
4、如图,四棱锥中,底面ABCD为平行四边形,,,底面ABCD.
(I)证明:;
(II)设PD=AD=1,求棱锥D-PBC的高.
5、已知函数(其中常数a,b∈R),是奇函数.
(Ⅰ)求的表达式;
(Ⅱ)讨论的单调性,并求在区间[1,2]上的最大值和最小值.
6、设椭圆的左、右焦点分别为F1,F2。点满足
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆相交于M,N两点,且,求椭圆的方程。
高考数学大题突破训练(八)
1、在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S=(a2+b2-c2).
(Ⅰ)求角C的大小;
(Ⅱ)求sinA+sinB的最大值.
2、有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:
其中直径在区间[1.48,1.52]内的零件为一等品。
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
(ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率。
3、如图,在四棱锥中,底面为平行四边形,,,为中点,平面, ,为中点.
(Ⅰ)证明://平面;
(Ⅱ)证明:平面;
(Ⅲ)求直线与平面所成角的正切值.
4、设等差数列满足,。
(Ⅰ)求的通项公式;
(Ⅱ)求的前项和及使得最大的序号的值。
5、已知函数f(x)=,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.
6、设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且,,成等差数列。
(Ⅰ)求
(Ⅱ)若直线的斜率为1,求b的值。
高考数学大题突破训练(五)参考答案
1、解:(1)
;
(2)
故
2、解:(I)甲校两男教师分别用A、B表示,女教师用C表示;
乙校男教师用D表示,两女教师分别用E、F表示
从甲校和乙校报名的教师中各任选1名的所有可能的结果为:
(A,D)(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F)共9种。
从中选出两名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F)共4种,
选出的两名教师性别相同的概率为
(II)从甲校和乙校报名的教师中任选2名的所有可能的结果为:
(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),
(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种,
从中选出两名教师来自同一学校的结果有:
(A,B),(A,C),(B,C),(D,E),(D,F),(E,F)共6种,
选出的两名教师来自同一学校的概率为
3、证明:(Ⅰ)因为D,E分别为AP,AC的中点,
所以DE//PC。
又因为DE平面BCP,
所以DE//平面BCP。
(Ⅱ)因为D,E,F,G分别为
AP,AC,BC,PB的中点,
所以DE//PC//FG,DG//AB//EF。
所以四边形DEFG为平行四边形,
又因为PC⊥AB,
所以DE⊥DG,
所以四边形DEFG为矩形。
(Ⅲ)存在点Q满足条件,理由如下:
连接DF,EG,设Q为EG的中点
由(Ⅱ)知,DF∩EG=Q,且QD=QE=QF=QG=EG.
分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN。
与(Ⅱ)同理,可证四边形MENG为矩形,其对角线点为EG的中点Q,
且QM=QN=EG,
所以Q为满足条件的点.
4、解:(I)设q为等比数列的公比,则由,
即,解得(舍去),因此
所以的通项为
(II)
5、解(Ⅰ)将(0,4)代入C的方程得 ∴b=4
又 得即, ∴a=5
∴C的方程为
( Ⅱ)过点且斜率为的直线方程为,
设直线与C的交点为A,B,
将直线方程代入C的方程,得,
即,解得,,
AB的中点坐标, ,
即中点为。
6、解:(Ⅰ),
.
令,得(舍去).
当时.;当时,,
故当时,为增函数;当时,为减函数.
为的极大值点,且.
(Ⅱ)方法一:原方程可化为,
即为,且
①当时,,则,即,
,此时,∵,
此时方程仅有一解.
②当时,,由,得,,
若,则,方程有两解;
若时,则,方程有一解;
若或,原方程无解.
方法二:原方程可化为,
即,
①当时,原方程有一解;
②当时,原方程有二解;
③当时,原方程有一解;
④当或时,原方程无解.
(Ⅲ)由已知得,
.
设数列的前n项和为,且()
从而有,当时,.
又
.
即对任意时,有,又因为,所以.
则,故原不等式成立.
高考数学大题突破训练(六)参考答案
1、(Ⅰ)因为
所以
(Ⅱ)
所以的通项公式为
2、解:(Ⅰ)分别记甲、乙在三小时以上且不超过四小时还车为事件A、B,则
,.
答:甲、乙在三小时以上且不超过四小时还车的概率分别为、.
(Ⅱ)记甲、乙两人所付的租车费用之和小于6元为事件C,则
.
答:甲、乙两人所付的租车费用之和小于6元的概率为
3、解:(I)
故的最小正周期为
(II)依题意
当为增函数,
所以上的最大值为
4、(Ⅰ)连结AB1与BA1交于点O,连结OD,
∵C1D∥平面AA1,A1C1∥AP,∴AD=PD,又AO=B1O,
∴OD∥PB1,又ODÌ面BDA1,PB1Ë面BDA1,
∴PB1∥平面BDA1.
(Ⅱ)过A作AE⊥DA1于点E,连结BE.∵BA⊥CA,BA⊥AA1,且AA1∩AC=A,
∴BA⊥平面AA1C1C.由三垂线定理可知BE⊥DA1.
∴∠BEA为二面角A-A1D-B的平面角.
在Rt△A1C1D中,,
又,∴.
在Rt△BAE中,,∴.
故二面角A-A1D-B的平面角的余弦值为.
5、(Ⅰ)解:当时,
所以曲线在点处的切线方程为
(Ⅱ)解:,令,解得
因为,以下分两种情况讨论:
(1)若变化时,的变化情况如下表:
+
-
+
所以,的单调递增区间是的单调递减区间是。
(2)若,当变化时,的变化情况如下表:
+
-
+
所以,的单调递增区间是的单调递减区间是
(Ⅲ)证明:由(Ⅱ)可知,当时,在内的单调递减,在内单调递增,以下分两种情况讨论:
(1)当时,在(0,1)内单调递减,
所以对任意在区间(0,1)内均存在零点。
(2)当时,在内单调递减,在内单调递增,若
所以内存在零点。
若
所以内存在零点。
所以,对任意在区间(0,1)内均存在零点。
综上,对任意在区间(0,1)内均存在零点。
6、解:⑴ ,椭圆方程为,
∴ 左、右焦点坐标为。
⑵ ,椭圆方程为,设,则
∴ 时; 时。
⑶ 设动点,则
∵ 当时,取最小值,且,∴ 且
解得。
高考数学大题突破训练(七)参考答案
1、(Ⅰ)解:由
所以
(Ⅱ)解:因为,所以
所以
2、(Ⅰ)解:设等差数列的公差为,由题意可知
即,从而
因为
故通项公式
(Ⅱ)解:记
所以
从而,当时,;当
3、解:这是等可能性事件的概率计算问题。
(I)解法一:所有可能的申请方式有34种,而“没有人申请A片区房源”的申请方式有24种。
记“没有人申请A片区房源”为事件A,则
解法二:设对每位申请人的观察为一次试验,这是4次独立重复试验.
记“申请A片区房源”为事件A,则
由独立重复试验中事件A恰发生k次的概率计算公式知,没有人申请A片区房源的概率为
(II)所有可能的申请方式有34种,而“每个片区的房源都有人申请”的申请方式有
种.
记“每个片区的房源都有人申请”为事件B,从而有
4、(Ⅰ)因为, 由余弦定理得
从而BD2+AD2= AB2,故BDAD
又PD底面ABCD,可得BDPD
所以BD平面PAD. 故 PABD
(Ⅱ)如图,作DEPB,垂足为E。已知PD底面ABCD,则PDBC。由(Ⅰ)知BDAD,又BC//AD,所以BCBD。
故BC平面PBD,BCDE。则DE平面PBC。
由题设知,PD=1,则BD=,PB=2,
根据BE·PB=PD·BD,得DE=,即棱锥D—PBC的高为
5、解:(Ⅰ)由题意得
因此是奇函数,所以有
从而
(Ⅱ)由(Ⅰ)知,
上是减函数;当从而在区间上是增函数。
由前面讨论知,而
因此
,最小值为
6、(Ⅰ)解:设,因为,
所以,整理得(舍)
或
(Ⅱ)解:由(Ⅰ)知,可得椭圆方程为,直线FF2的方程为
A,B两点的坐标满足方程组消去并整理,得。解得,得方程组的解
不妨设,,
所以
于是
圆心到直线PF2的距离
因为,所以
整理得,得(舍),或
所以椭圆方程为
高考数学大题突破训练(八)参考答案
1、(Ⅰ)解:由题意可知
absinC=,2abcosC. 所以tanC=. 因为02,则.当x变化时,f’(x),f(x)的变化情况如下表:
X
0
f’(x)
+
0
-
0
+
f(x)
极大值
极小值
当时,f(x)>0等价于即
解不等式组得或.因此2