- 264.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
交变电流和电磁感应电磁感应与电路规律的综合应用专题测试题
1.如图所示,MN、PQ为两平行金属导轨,M、P间连有一阻值为R的电阻,导轨处于匀强磁场中,磁感应强度为B,磁场方向与导轨所在平面垂直,图中磁场垂直纸面向里.有一金属圆环沿两导轨滑动,速度为v,与导轨接触良好,圆环的直径d与两导轨间的距离相等.设金属环与导轨的电阻均可忽略,当金属环向右做匀速运动时
A.有感应电流通过电阻R,大小为
B.有感应电流通过电阻R,大小为
C.有感应电流通过电阻R,大小为
D.没有感应电流通过电阻R
2.在方向水平的、磁感应强度为0.5 T的匀强磁场中,有两根竖直放置的导体轨道cd、e f,其宽度为1 m,其下端与电动势为12 V、内电阻为1 Ω的电源相接,质量为0.1 kg的金属棒MN的两端套在导轨上可沿导轨无摩擦地滑动,如图所示,除电源内阻外,其他一切电阻不计,g=10 m/s2,从S闭合直到金属棒做匀速直线运动的过程中
A.电源所做的功等于金属棒重力势能的增加
B.电源所做的功等于电源内阻产生的焦耳热
C.匀速运动时速度为20 m/s
D.匀速运动时电路中的电流强度大小是2 A
3.两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R,导轨自身的电阻可忽略不计.斜面处在匀强磁场中,磁场方向垂直于斜面向上.质量为m、电阻可不计的金属棒ab,在沿着斜面与棒垂直的恒力F作用下沿导轨匀速上滑,并上升h高度.如图所示,在这过程中
A.作用于金属棒上的各个力的合力所做的功等于零
B.作用于金属棒上的各个力的合力所做的功等于mgh与电阻R上发出的焦耳热之和
C.恒力F与安培力的合力所做的功等于零
D.恒力F与重力的合力所做的功等于电阻R上发出的焦耳热
4.如图所示,空间存在垂直于纸面的均匀磁场,在半径为a的圆形区域内、外,磁场方向相反,磁感应强度的大小均为B.一半径为b,电阻为R的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合.在内、外磁场同时由B均匀地减小到零的过程中,通过导线截面的电量Q=_________.
5.两根相距d=0.20 m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.20 T,导轨上面横放着两条金属细杆,构成矩形闭合回路.每条金属细杆的电阻为r=0.25 Ω,回路中其余部分的电阻可不计,已知两金属细杆在平行导轨的拉力作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0 m/s,如图所示,不计导轨上的摩擦.
(1)求作用于每条金属细杆的拉力的大小.
(2)求两金属细杆在间距增加0.40 m的滑动过程中共产生的热量.
6.(1999年上海)如图所示,长为L、电阻r=0.3 Ω、质量m=0.1 kg的金属棒CD垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R=0.5 Ω的电阻,量程为0~3.0 A的电流表串接在一条导轨上,量程为0~1.0 V的电压表接在电阻R的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定外力F使金属棒右移.当金属棒以v=2 m/s的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏.问:
(1)此满偏的电表是什么表?说明理由.
(2)拉动金属棒的外力F多大?
(3)此时撤去外力F,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R的电量.
7.如图所示,AB和CD是足够长的平行光滑导轨,其间距为l,导轨平面与水平面的夹角为θ.整个装置处在磁感应强度为B的,方向垂直于导轨平面向上的匀强磁场中.AC端连有电阻值为R的电阻.若将一质量M,垂直于导轨的金属棒EF在距BD端s处由静止释放,在EF棒滑至底端前会有加速和匀速两个运动阶段.今用大小为F,方向沿斜面向上的恒力把EF棒从BD位置由静止推至距BD端s处,突然撤去恒力F,棒EF最后又回到BD端.求:
(1)EF棒下滑过程中的最大速度.
(2)EF棒自BD端出发又回到BD端的整个过程中,有多少电能转化成了内能(金属棒、导轨的电阻均不计)?
8.在磁感应强度为B=0.4 T的匀强磁场中放一个半径r0=50 cm的圆形导轨,上面搁有互相垂直的两根导体棒,一起以角速度ω=103 rad/s逆时针匀速转动.圆导轨边缘和两棒中央通过电刷与外电路连接,若每根导体棒的有效电阻为R0=0.8 Ω,外接电阻R=3.9 Ω,如所示,求:
(1)每半根导体棒产生的感应电动势.
(2)当电键S接通和断开时两电表示数(假定RV→∞,RA→0).
参考答案
7.(1)如图所示,当EF从距BD端s处由静止开始滑至BD
的过程中,受力情况如图所示.安培力:F安=BIl=B
根据牛顿第二定律:a= ①
所以,EF由静止开始做加速度减小的变加速运动.当a=0时速度达到最大值vm.
由①式中a=0有:Mgsinθ-B2l2vm/R=0 ②
vm=
(2)由恒力F推至距BD端s处,棒先减速至零,然后从静止下滑,在滑回BD之前已达最大速度vm开始匀速.
设EF棒由BD从静止出发到再返回BD过程中,转化成的内能为ΔE.根据能的转化与守恒定律:
Fs-ΔE=Mvm2 ③
R′=r+R=(0.1+3.9)Ω=4Ω.
由全电路欧姆定律得电流强度(即电流表示数)为
I= A=12.5 A.
此时电压表示数即路端电压为
U=E-Ir=50-12.5×0.1 V=48.75 V(电压表示数)
或U=IR=12.5×3.9 V=48.75 V