- 526.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高中数学第十五章 复数
考试内容:
复数的概念.
复数的加法和减法.
复数的乘法和除法.
数系的扩充.
考试要求:
(1)了解复数的有关概念及复数的代数表示和几何意义.
(2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算.
(3)了解从自然数系到复数系的关系及扩充的基本思想.
§15. 复 数 知识要点
1. ⑴复数的单位为i,它的平方等于-1,即.
⑵复数及其相关概念:
① 复数—形如a + bi的数(其中);
② 实数—当b = 0时的复数a + bi,即a;
③ 虚数—当时的复数a + bi;
④ 纯虚数—当a = 0且时的复数a + bi,即bi.
⑤ 复数a + bi的实部与虚部—a叫做复数的实部,b叫做虚部(注意a,b都是实数)
⑥ 复数集C—全体复数的集合,一般用字母C表示.
⑶两个复数相等的定义:
.
⑷两个复数,如果不全是实数,就不能比较大小.
注:①若为复数,则若,则.(×)[为复数,而不是实数]
若,则.(√)
②若,则是的必要不充分条件.(当,
时,上式成立)
2. ⑴复平面内的两点间距离公式:.
其中是复平面内的两点所对应的复数,间的距离.
由上可得:复平面内以为圆心,为半径的圆的复数方程:.
⑵曲线方程的复数形式:
①为圆心,r为半径的圆的方程.
②表示线段的垂直平分线的方程.
③为焦点,长半轴长为a的椭圆的方程(若,此方程表示线段).
④表示以为焦点,实半轴长为a的双曲线方程(若
,此方程表示两条射线).
⑶绝对值不等式:
设是不等于零的复数,则
①.
左边取等号的条件是,右边取等号的条件是.
②.
左边取等号的条件是,右边取等号的条件是.
注:.
3. 共轭复数的性质:
,(a + bi)
()
注:两个共轭复数之差是纯虚数. (×)[之差可能为零,此时两个复数是相等的]
4 ⑴①复数的乘方:
②对任何,及有
③
注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如若由就会得到的错误结论.
②在实数集成立的. 当为虚数时,,所以复数集内解方程不能采用两边平方法.
⑵常用的结论:
若是1的立方虚数根,即,则 .
5. ⑴复数是实数及纯虚数的充要条件:
①.
②若,是纯虚数.
⑵模相等且方向相同的向量,不管它的起点在哪里,都认为是相等的,而相等的向量表示同一复数. 特例:零向量的方向是任意的,其模为零.
注:.
6. ⑴复数的三角形式:.
辐角主值:适合于0≤<的值,记作.
注:①为零时,可取内任意值.
②辐角是多值的,都相差2的整数倍.
③设则.
⑵复数的代数形式与三角形式的互化:
,,.
⑶几类三角式的标准形式:
7. 复数集中解一元二次方程:
在复数集内解关于的一元二次方程时,应注意下述问题:
①当时,若>0,则有二不等实数根;若=0,则有二相等实数根;若<0,则有二相等复数根(为共轭复数).
②当不全为实数时,不能用方程根的情况.
③不论为何复数,都可用求根公式求根,并且韦达定理也成立.
8. 复数的三角形式运算:
棣莫弗定理:
一、选择题
1.(2009年广东卷文)下列n的取值中,使=1(i是虚数单位)的是
A.n=2 B .n=3 C .n=4 D .n=5
4.(2009浙江卷文)设(是虚数单位),则 ( )
A. B. C. D.5.(2009北
7.(2009山东卷文)复数等于( ). .
A. B. C. D.
16.(2009辽宁卷文)已知复数,那么=
(A) (B) (C) (D)
16.(2009辽宁卷文)已知复数,那么=
(A) (B) (C) (D)
19.(2009宁夏海南卷文)复数
(A) (B) (C) (D)
2. (安徽文.1)i是虚数单位,i(1+i)等于学科网
(A)1+i (B)-1-i (C)1-i (D)-1+i学科网
5.(广东文.2)下列n的取值中,使=1(i是虚数单位)的是
A.n=2 B .n=3 C .n=4 D .n=5
9. (宁夏海南文.2)复数
(A) (B) (C) (D)
12.(山东理,文.2)复数等于( ).
A. B. C. D.
15.(天津理,文.1)是虚数单位,=
A B C D
17.(浙江文.3)设(是虚数单位),则( )
A. B. C. D.
二、填空题
2.(2009福建卷文)复数的实部是 。
4. (江苏文理.1)若复数其中是虚数单位,则复数的实部为 。
高中数学第十三章-极 限
考试内容:教学归纳法.数学归纳法应用.数列的极限.函数的极限.根限的四则运算.函数的连续性.
考试要求:
(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.
(2)了解数列极限和函数极限的概念.
(3)掌握极限的四则运算法则;会求某些数列与函数的极限.
(4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质.
知识要点
1. ⑴第一数学归纳法:①证明当取第一个时结论正确;②假设当()时,结论正确,证明当时,结论成立.
⑵第二数学归纳法:设是一个与正整数有关的命题,如果
①当()时,成立;
②假设当()时,成立,推得时,也成立.
那么,根据①②对一切自然数时,都成立.
2. ⑴数列极限的表示方法:
①
②当时,.
⑵几个常用极限:
①(为常数)
②
③对于任意实常数,
当时,
当时,若a = 1,则;若,则不存在
当时,不存在
⑶数列极限的四则运算法则:
如果,那么
① ② ③
特别地,如果C是常数,那么.
⑷数列极限的应用:
求无穷数列的各项和,特别地,当时,无穷等比数列的各项和为.
(化循环小数为分数方法同上式)
注:并不是每一个无穷数列都有极限.
3. 函数极限:
⑴当自变量无限趋近于常数(但不等于)时,如果函数无限趋进于一个常数,就是说当趋近于时,函数的极限为.记作或当时,.
注:当时,是否存在极限与在处是否定义无关,因为并不要求.(当然,在是否有定义也与在处是否存在极限无关.函数在有定义是存在的既不充分又不必要条件.)
如在处无定义,但存在,因为在处左右极限均等于零.
⑵函数极限的四则运算法则:
如果,那么
① ② ③
特别地,如果C是常数,那么.
()
注:①各个函数的极限都应存在.
②四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况.
⑶几个常用极限:
① ②(0<<1);(>1)
③ ④,()
4. 函数的连续性:
⑴如果函数f(x),g(x)在某一点连续,那么函数在点处都连续.
⑵函数f(x)在点处连续必须满足三个条件:
①函数f(x)在点处有定义;②存在;③函数f(x)在点处的极限值等于该点的函数值,即.
⑶函数f(x)在点处不连续(间断)的判定:
如果函数f(x)在点处有下列三种情况之一时,则称为函数f(x)的不连续点.
①f(x)在点处没有定义,即不存在;②不存在;③存在,但.
5. 零点定理,介值定理,夹逼定理:
⑴零点定理:设函数在闭区间上连续,且.那么在开区间内至少有函数
的一个零点,即至少有一点(<<)使.
⑵介值定理:设函数在闭区间上连续,且在这区间的端点取不同函数值,,那么对于之间任意的一个数,在开区间内至少有一点,使得(<<).
⑶夹逼定理:设当时,有≤≤,且,则必有
注::表示以为的极限,则就无限趋近于零.(为最小整数)
6. 几个常用极限:
① ② ③为常数)
④ ⑤为常数)
1.(天津卷)设等差数列的公差是2,前项的和为则.
2.(重庆卷)设正数a,b满足, 则( )
A.0 B. C. D.1
3.(辽宁卷)已知函数在点处连续,则 .
4.(福建卷) 把展开成关于的多项式,其各项系数和为,则等于( )
A. B. C. D.2
5.(湖南卷) 下列四个命题中,不正确的是( )
A.若函数在处连续,则
B.函数的不连续点是和
C.若函数、满足,则
D.
6.(江西卷)( )
A.等于 B.等于 C.等于 D.不存在
17.(四川卷)( )
(A)0 (B)1 (C) (D)